Characterization of Genes for Durable Resistance to Leaf Rust and Yellow Rust in Cimmyt Spring Wheats

Author(s):  
H. M. William ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
G. Rosewarne
2013 ◽  
Vol 33 (2) ◽  
pp. 385-399 ◽  
Author(s):  
B. R. Basnet ◽  
R. P. Singh ◽  
A. M. H. Ibrahim ◽  
S. A. Herrera-Foessel ◽  
J. Huerta-Espino ◽  
...  

Euphytica ◽  
1988 ◽  
Vol 38 (2) ◽  
pp. 149-158 ◽  
Author(s):  
P. van Dijk ◽  
J. E. Parlevliet ◽  
G. H. J. Kema ◽  
A. C. Zeven ◽  
R. W. Stubbs

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Desmond E. P. Klenam ◽  
Michael O. Bodunrin ◽  
Stefania Akromah ◽  
Emmanuel Gikunoo ◽  
Anthony Andrews ◽  
...  

Abstract An overview of the characterisation of rust by colour is presented. Each distinct rust colour is caused by atmospheric impurities, high or low moisture content and high or low oxygen environment over time. Yellow rust is mainly due to the high moisture environment over a period of time, which drips. Brown rust is dry, crusty and due to water and oxygen contact with localised patches on component surfaces. Black rust, the most stable form, occurs in low moisture and low oxygen environment. The rust residue shows where the reaction started, especially in contact with chlorides. The causative factors of red rust are atmospheric and similar to black rust in a chloride-containing environment. The effect of packaging, manufacturing and environmental factors on rust colour is briefly discussed. Visual characterization of rust could pre-empt root causes and analytical tools for validation. The limitations of these concepts are mentioned and directions for future research highlighted.


Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 979-984 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected wheat leaves by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio River Valley, southeast, California, and Washington State, in order to determine the virulence of the wheat leaf rust population in 2005. Single uredinial isolates (797 in total) were derived from the collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3a, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr21, Lr28, and winter wheat lines with genes Lr41 and Lr42. In the United States in 2005, 72 virulence phenotypes of P. triticina were found. Virulence phenotype TDBGH, selected by virulence to resistance gene Lr24, was the most common phenotype in the United States, and was found throughout the Great Plains region. Virulence phenotype MCDSB with virulence to Lr17a and Lr26 was the second most common phenotype and was found widely in the wheat growing regions of the United States. Virulence phenotype MFPSC, which has virulence to Lr17a, Lr24, and Lr26, was the third most common phenotype, and was found in the Ohio Valley region, the Great Plains, and California. The highly diverse population of P. triticina in the United States will continue to present a challenge for the development of wheat cultivars with effective durable resistance to leaf rust.


2014 ◽  
Vol 104 (12) ◽  
pp. 1322-1328 ◽  
Author(s):  
Alexander Loladze ◽  
Dhouha Kthiri ◽  
Curtis Pozniak ◽  
Karim Ammar

Leaf rust, caused by Puccinia triticina, is one of the main fungal diseases limiting durum wheat production. This study aimed to characterize previously undescribed genes for leaf rust resistance in durum wheat. Six different resistant durum genotypes were crossed to two susceptible International Maize and Wheat Improvement Center (CIMMYT) lines and the resulting F1, F2, and F3 progenies were evaluated for leaf rust reactions in the field and under greenhouse conditions. In addition, allelism tests were conducted. The results of the study indicated that most genotypes carried single effective dominant or recessive seedling resistance genes; the only exception to this was genotype Gaza, which carried one adult plant and one seedling resistance gene. In addition, it was concluded that the resistance genes identified in the current study were neither allelic to LrCamayo or Lr61, nor were they related to Lr3 or Lr14a, the genes that already are either ineffective or are considered to be vulnerable for breeding purposes. A complicated allelic or linkage relationship between the identified genes is discussed. The results of the study will be useful for breeding for durable resistance by creating polygenic complexes.


2018 ◽  
Author(s):  
Liga Feodorova-Fedotova ◽  
◽  
Biruta Bankina ◽  

2014 ◽  
Vol 11 (2) ◽  
pp. 803-812
Author(s):  
Baghdad Science Journal

General survey for wheat rust diseases in Iraqi fields was done during the seasons of 2010, 2011 and 2012. The survey covered different fields in southern, middle and northern regions. Results of the first season indicated that most of Iraqi cultivars such as Tmmoze2, IPA 99 and Mexipak showed different types of susceptibility to both yellow and leaf rust infection. Disease severity increased when the conditions were favorable for infections with using susceptible cultivars. The severity of leaf rust was less in the north region comparing with the middle and south regions. Most of the introduced cultivars such as Sham6 and Cimmyto showed susceptible reaction to yellow and leaf rust. Yellow rust was in epiphytotic form at the Iraqi-Syrian-Turkish triangle where the disease severity was 100%. Low disease severity of stem rust was observed on some cultivars (1-5%), except for the cultivar Mexipak which showed 40%S in Najaf. Rusts at season of 2011 were restricted mostly in Baghdad and the yellow rust was dominant. The AUDPC of 15 wheat cultivars showed that Sawa and Sali were highly susceptible to the three types of rusts while Babil113 and Tamoze2 were resistant. No rusts were detected at season 2012.


2019 ◽  
Author(s):  
Geleta Dugassa Barka ◽  
Eveline Teixeira Caixeta ◽  
Sávio Siqueira Ferreira ◽  
Laércio Zambolim

AbstractPhysiology-based differentiation of SH genes and Hemileia vastatrix races is the principal method employed for the characterization of coffee leaf rust resistance. Based on the gene-for-gene theory, nine major rust resistance genes (SH1-9) have been proposed. However, these genes have not been characterized at the molecular level. Consequently, the lack of molecular data regarding rust resistance genes or candidates is a major bottleneck in coffee breeding. To address this issue, we screened a BAC library with resistance gene analogs (RGAs), identified RGAs, characterized and explored for any SH related candidate genes. Herein, we report the identification and characterization of a gene (gene 11), which shares conserved sequences with other SH genes and displays a characteristic polymorphic allele conferring different resistance phenotypes. Furthermore, comparative analysis of the two RGAs belonging to CC-NBS-LRR revealed more intense diversifying selection in tomato and grape genomes than in coffee. For the first time, the present study has unveiled novel insights into the molecular nature of the SH genes, thereby opening new avenues for coffee rust resistance molecular breeding. The characterized candidate RGA is of particular importance for further biological function analysis in coffee.


Author(s):  
R.O. Davoyan ◽  
◽  
I.V. Bebyakina ◽  
E.R. Davoyan ◽  
V.A. Bibishev ◽  
...  

T. miguschovae (GGAADD) was used as a “genetic bridge” to transfer valuable traits to the common wheat instead T. militina and Ae. tauschii. Lines with resistance to leaf rust, yellow rust and powdery mildew, as well as with high protein content (17–18 %) were selected. The lines with translocation Т2BL.2BS-2GL, 5BS.5BL-5GL, T6BS.6BL-6GL and substitution of chromosomes 1D(1Dt), 4D(4Dt), 5D(5Dt), 6D(6Dt) were identified. DNA analysis revealed that the lines can carry leaf rust resistance genes that are different from the known Lr39 and Lr50. Introgression lines have been successfully used in breeding. Five common winter wheat cultivars are developed.


Author(s):  
G. F. Laundon

Abstract A description is provided for Pucciniastrum americanum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Pycnia and aecia on Picea glauca (=P. canadensis), uredia and telia on Rubus idaeus (incl. R. strigosus) and R. leucodermis (raspberries). DISEASE: Needle rust of white spruce. Late leaf rust or late yellow rust of raspberry, infecting canes, leaves, petioles, calyces and fruits. GEOGRAPHICAL DISTRIBUTION: Canada and U.S.A. (widely distributed, recorded from British Columbia, Connecticut, Idaho, Illinois, Iowa, Mass., Md, Me, Montana, North Dakota, New Hamp., New Jersey, Nova Scotia, New York, Ohio, Ontario, Quebec, Vermont, Wisconsin, West Virginia). TRANSMISSION: Although the basidiospores infect Picea glauca (white spruce) (Darker, 1929) in some areas they probably play little part in the life cycle on raspberry since this rust is found on the latter host year after year in regions remote from any spruce trees (Anderson, 1956).


Sign in / Sign up

Export Citation Format

Share Document