scholarly journals Private Information Storage with Logarithmic-Space Secure Hardware

Author(s):  
Alexander Iliev ◽  
Sean Smith
2019 ◽  
Vol 11 (2) ◽  
pp. 103-113
Author(s):  
Jyotirmoy Pramanik ◽  
Avishek Adhikari

Abstract Secret sharing allows one to share a piece of information among n participants in a way that only qualified subsets of participants can recover the secret whereas others cannot. Some of these participants involved may, however, want to forge their shares of the secret(s) in order to cheat other participants. Various cheater identifiable techniques have been devised in order to identify such cheaters in secret sharing schemes. On the other hand, Ramp secret sharing schemes are a practically efficient variant of usual secret sharing schemes with reduced share size and some loss in security. Ramp secret sharing schemes have many applications in secure information storage, information-theoretic private information retrieval and secret image sharing due to producing relatively smaller shares. However, to the best of our knowledge, there does not exist any cheater identifiable ramp secret sharing scheme. In this paper we define the security model for cheater identifiable ramp secret sharing schemes and provide two constructions for cheater identifiable ramp secret sharing schemes. In addition, the second construction is secure against rushing cheaters who are allowed to submit their shares during secret reconstruction after observing other participants’ responses in one round. Also, we do not make any computational assumptions for the cheaters, i.e., cheaters may be equipped with unlimited time and resources, yet, the cheating probability would be bounded above by a very small positive number.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Jiancai Xue ◽  
Zhang-Kai Zhou ◽  
Limin Lin ◽  
Chao Guo ◽  
Shang Sun ◽  
...  

AbstractThe progress of metaoptics relies on identifying photonic materials and geometries, the combination of which represents a promising approach to complex and desired optical functionalities. Material candidate options are primarily limited by natural availability. Thus, the search for meta-atom geometries, by either forward or inverse means, plays a pivotal role in achieving more sophisticated phenomena. Past efforts mainly focused on building the geometric library of individual meta-atoms and synthesizing various ones into a design. However, those efforts neglected the powerfulness of perturbative metaoptics due to the perception that perturbations are usually regarded as adverse and in need of being suppressed. Here, we report a perturbation-induced countersurveillance strategy using compound nanosieves mediated by structural and thermal perturbations. Private information can be almost perfectly concealed and camouflaged by the induced thermal-spectral drifts, enabling information storage and exchange in a covert way. This perturbative metaoptics can self-indicate whether the hidden information has been attacked during delivery. Our results establish a perturbative paradigm of securing a safer world of information and internet of things.


Author(s):  
Hongjiao Wu ◽  
Ashutosh Dhar Dwivedi ◽  
Gautam Srivastava

The essence of “blockchain” is a shared database in which information stored is un-falsifiable, traceable, open, and transparent. Therefore, to improve the security of private information in medical systems, this article uses blockchain technology to design a method to protect private information in medical systems and effectively realize anti-theft control of private information. First, the Patient-oriented Privacy Preserving Access Control model is introduced into the access control process of private information in medical systems. Next, a private information storage platform is built by using blockchain technology, and information transmission is realized using standard cryptographic algorithms. In this process, file authorization contracts are also used to guarantee the security of private information and further prevent theft of medical private information. Our simulation results show that the storage response time of this method is kept below 1,000 ms, and the maximum information throughput rate reaches 550 kbit/s, which indicates that this method has strong performance in information storage and transmission efficiency. Moreover, the reliability and bandwidth utilization of data transmission across domains is higher, so the method has higher information security control performance and superior overall performance.


Author(s):  
Harshal Jorwekar

The mystery between the emotional improvement of medical information protection interest and long periods of administrative guideline has eased back advancement for electronic medical records (EMRs). In this paper, we propose a efficient, secure and decentralized Blockchain system for data privacy preserving and sharing. This manages confidentiality, authentication, data preserving and data sharing when handling sensitive information. We exploit consortium Blockchain and smart contracts to accomplish secure information storage and sharing, which forestalls information sharing without consent. The patient’s historical data, medical record, patient’s private information is very critical and needs to be stored and maintained securely. The proposed framework builds information security and eliminates the cost, time, and assets needed to deal with the medical care information records.


Author(s):  
D. E. Speliotis

The interaction of electron beams with a large variety of materials for information storage has been the subject of numerous proposals and studies in the recent literature. The materials range from photographic to thermoplastic and magnetic, and the interactions with the electron beam for writing and reading the information utilize the energy, or the current, or even the magnetic field associated with the electron beam.


Author(s):  
T. P. Nolan

Thin film magnetic media are being used as low cost, high density forms of information storage. The development of this technology requires the study, at the sub-micron level, of morphological, crystallographic, and magnetic properties, throughout the depth of the deposited films. As the microstructure becomes increasingly fine, widi grain sizes approaching 100Å, the unique characterization capabilities of transmission electron microscopy (TEM) have become indispensable to the analysis of such thin film magnetic media.Films were deposited at 225°C, on two NiP plated Al substrates, one polished, and one circumferentially textured with a mean roughness of 55Å. Three layers, a 750Å chromium underlayer, a 600Å layer of magnetic alloy of composition Co84Cr14Ta2, and a 300Å amorphous carbon overcoat were then sputter deposited using a dc magnetron system at a power of 1kW, in a chamber evacuated below 10-6 torr and filled to 12μm Ar pressure. The textured medium is presently used in industry owing to its high coercivity, Hc, and relatively low noise. One important feature is that the coercivity in the circumferential read/write direction is significandy higher than that in the radial direction.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


1966 ◽  
Vol 05 (03) ◽  
pp. 142-146
Author(s):  
A. Kent ◽  
P. J. Vinken

A joint center has been established by the University of Pittsburgh and the Excerpta Medica Foundation. The basic objective of the Center is to seek ways in which the health sciences community may achieve increasingly convenient and economical access to scientific findings. The research center will make use of facilities and resources of both participating institutions. Cooperating from the University of Pittsburgh will be the School of Medicine, the Computation and Data Processing Center, and the Knowledge Availability Systems (KAS) Center. The KAS Center is an interdisciplinary organization engaging in research, operations, and teaching in the information sciences.Excerpta Medica Foundation, which is the largest international medical abstracting service in the world, with offices in Amsterdam, New York, London, Milan, Tokyo and Buenos Aires, will draw on its permanent medical staff of 54 specialists in charge of the 35 abstracting journals and other reference works prepared and published by the Foundation, the 700 eminent clinicians and researchers represented on its International Editorial Boards, and the 6,000 physicians who participate in its abstracting programs throughout the world. Excerpta Medica will also make available to the Center its long experience in the field, as well as its extensive resources of medical information accumulated during the Foundation’s twenty years of existence. These consist of over 1,300,000 English-language _abstract of the world’s biomedical literature, indexes to its abstracting journals, and the microfilm library in which complete original texts of all the 3,000 primary biomedical journals, monitored by Excerpta Medica in Amsterdam are stored since 1960.The objectives of the program of the combined Center include: (1) establishing a firm base of user relevance data; (2) developing improved vocabulary control mechanisms; (3) developing means of determining confidence limits of vocabulary control mechanisms in terms of user relevance data; 4. developing and field testing of new or improved media for providing medical literature to users; 5. developing methods for determining the relationship between learning and relevance in medical information storage and retrieval systems’; and (6) exploring automatic methods for retrospective searching of the specialized indexes of Excerpta Medica.The priority projects to be undertaken by the Center are (1) the investigation of the information needs of medical scientists, and (2) the development of a highly detailed Master List of Biomedical Indexing Terms. Excerpta Medica has already been at work on the latter project for several years.


Sign in / Sign up

Export Citation Format

Share Document