1.2.6 Other types of nuclear reactors (1/2), 1.2 Nuclear power plants

Author(s):  
K. Kugeler ◽  
E. Kugeler ◽  
N. Pöppe ◽  
Z. Alkan ◽  
W. Grätz
Author(s):  
Florentine KOPPENBORG

Abstract The March 2011 nuclear accident (3.11) shook Japan’s nuclear energy policy to its core. In 2012, the Liberal Democratic Party (LDP) returned to government with a pro-nuclear policy and the intention to swiftly restart nuclear power plants. In 2020, however, only six nuclear reactors were in operation. Why has the progress of nuclear restarts been so slow despite apparent political support? This article investigates the process of restarting nuclear power plants. The key finding is that the ‘nuclear village’, centered on the LDP, Ministry of Economy Trade and Industry, and the nuclear industry, which previously controlled both nuclear policy goal-setting and implementation, remained in charge of policy decision making, i.e. goal-setting, but lost policy implementation power to an extended conflict over nuclear reactor restarts. The main factors that changed the politics of nuclear reactor restarts are Japan’s new nuclear safety agency, the Nuclear Regulation Authority (NRA), and a substantial increase in the number of citizens’ class-action lawsuits against nuclear reactors. These findings highlight the importance of assessing both decision making and implementation in assessments of policy change.


Atomic Energy ◽  
1995 ◽  
Vol 78 (2) ◽  
pp. 129-135
Author(s):  
V. I. Baranenko ◽  
A. I. Piontkovskii ◽  
S. P. Khmaryuk ◽  
N. N. Davidenko ◽  
A. G. Shalaev ◽  
...  

Author(s):  
Vincent Coulon ◽  
Sébastien Christophe ◽  
Laurence Grammosenis ◽  
Luc Guinard ◽  
Hervé Cordier

Abstract The field of protection against external natural hazards (eg.: rare and severe hazards) has regularly evolved since the design of the first NPPs (Nuclear Power Plants) to take into account the experience feedback. Following the Fukushima Daiichi accident in March 2011, consideration of rare and severe natural hazards has considerably increased in the international context. Taking rare and severe natural hazards into account is a challenge for operating nuclear reactors and a major issue for the design of new nuclear reactors. In Europe, considering lessons learnt from the Fukushima Daiichi accident, European safety authorities released new reference levels in the framework of WENRA 2013 (Western European Nuclear Regulators Association) standards for new reactors [1] to address external hazards more severe than the design basis hazards. Considering this input, the French and UK nuclear regulators have released specific guidelines (Guide No. 22 related to design of new pressurized water reactors [2] for France and ONR Safety Assessment Principles SAPs [3] for the UK) to describe how to apply those principles in their national context. To comply with those different guidelines, EDF has developed different approaches, called Beyond Design Basis (BDB) approaches, related to rare and severe natural hazards issue in the French and UK context for nuclear new build projects. Those two approaches are presented in the present technical paper with the following structure: - safety objectives; - hazards to consider; - SSCs (Structures, Systems, and Components) required to meet safety objectives; - study rules and assumptions; - analysis of deterministic or probabilistic nature, thereby including the following: ○ analysis of available margins (margin between 10−4 per annum exceedance frequency of hazard site level or equivalent level of safety and the chosen Design Basis Hazard level also called ‘inherent margin’); ○ Fukushima Daiichi accident Operating Experience feedback; ○ probabilistic safety analyses. This technical paper highlights common characteristics and differences between the two approaches considering the French and UK regulatory contexts.


2012 ◽  
Vol 134 (04) ◽  
pp. 28-32
Author(s):  
Bridget Mintz Testa

This article discusses the obstacles in producing ultraheavy duty products for nuclear reactors in the United States. There has not been much call for making reactor vessels in the United States for decades. Even in the 1970s, the peak decade for building nuclear power plants in the United States, only around a dozen reactor vessels were installed in the best years. To produce ultraheavy products, entirely new forging facilities would have to be built. As per some estimates, one new ultraheavy forging facility would cost $1.5 billion to $2.5 billion, and it would take five to seven years to build. There is also problem related to profit making. Changing these conditions to favor building domestic ultraheavy forging capability would take a coherent energy policy for the United States regarding nuclear power, making it much more important in the energy capabilities.


2021 ◽  
Vol 108 ◽  
pp. 35-44
Author(s):  
Jakub Holan ◽  
Petr Bíly ◽  
Radek Štefan

Nowadays, the safety of nuclear power plants is of increasing interest and importance. The main reasons for increased safety concerns are the recent major nuclear accident in Fukushima in 2011 and the overall tendency of environment protection. One of the possible ways of increasing the safety of nuclear power plants is the underground placement of all potentially dangerous systems under ground as the overlying soil or rock layer would act as a "earth" containment which would reduce the probability of ground level release following primary and secondary containment failure. Moreover, partial or total underground placement of nuclear power plant would reduce its visibility, and thus, public concerns would also be reduced. However, many design, operational, and economic disadvantages are linked with the underground placement of nuclear power plants. The aim of this paper is to provide state-of-the-art review of existing underground nuclear reactors, conceptual designs of underground nuclear reactors, and related literature, which can later be used for the design of a underground reinforced concrete containment building.


Sign in / Sign up

Export Citation Format

Share Document