Mechanical Strain Using 2D and 3D Bioreactors Induces Osteogenesis: Implications for Bone Tissue Engineering

2008 ◽  
Author(s):  
Martijn Griensven ◽  
Solvig Diederichs ◽  
Stefanie Roeker ◽  
Stefanie Boehm ◽  
Anja Peterbauer ◽  
...  
Author(s):  
Siddharth Shanbhag ◽  
Carina Kampleitner ◽  
Samih Mohamed-Ahmed ◽  
Mohammed Ahmad Yassin ◽  
Harsh Dongre ◽  
...  

Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation and bone regeneration capacity of mesenchymal stromal cells (MSC). Gingiva-derived progenitor cells (GPC) represent a less invasive alternative to bone marrow MSC (BMSC) for clinical applications. The aim of this study was to test the in vivo bone forming potential of human GPC and BMSC cultured as 3D spheroids or dissociated cells (2D). 2D and 3D cells encapsulated in constructs of human platelet lysate hydrogels (HPLG) and 3D-printed poly (L-lactide-co-trimethylene carbonate) scaffolds (HPLG-PLATMC) were implanted subcutaneously in nude mice; cell-free HPLG-PLATMC constructs served as a control. Mineralization was assessed using micro-computed tomography (µCT), histology, scanning electron microscopy (SEM) and in situ hybridization (ISH). After 4–8 weeks, µCT revealed greater mineralization in 3D-BMSC vs. 2D-BMSC and 3D-GPC (p < 0.05), and a similar trend in 2D-GPC vs. 2D-BMSC (p > 0.05). After 8 weeks, greater mineralization was observed in cell-free constructs vs. all 2D- and 3D-cell groups (p < 0.05). Histology and SEM revealed an irregular but similar mineralization pattern in all groups. ISH revealed similar numbers of 2D and 3D BMSC/GPC within and/or surrounding the mineralized areas. In summary, spheroid culture promoted ectopic mineralization in constructs of BMSC, while constructs of dissociated GPC and BMSC performed similarly. The combination of HPLG and PLATMC represents a promising scaffold for bone tissue engineering applications.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Matthew J. Barron ◽  
Chung-Jui Tsai ◽  
Seth W. Donahue

Successful bone tissue engineering requires the understanding of cellular activity in three-dimensional (3D) architectures and how it compares to two-dimensional (2D) architecture. We developed a perfusion culture system that utilizes fluid flow to mechanically load a cell-seeded 3D scaffold. This study compared the gene expression of osteoblastic cells in 2D and 3D cultures, and the effects of mechanical loading on gene expression in 2D and 3D cultures. MC3T3-E1 osteoblastlike cells were seeded onto 2D glass slides and 3D calcium phosphate scaffolds and cultured statically or mechanically loaded with fluid flow. Gene expression of OPN and FGF-2 was upregulated at 24 h and 48 h in 3D compared with 2D static cultures, while collagen 1 gene expression was downregulated. In addition, while flow increased OPN in 2D culture at 48 h, it decreased both OPN and FGF-2 in 3D culture. In conclusion, gene expression is different between 2D and 3D osteoblast cultures under static conditions. Additionally, osteoblasts respond to shear stress differently in 2D and 3D cultures. Our results highlight the importance of 3D mechanotransduction studies for bone tissue engineering applications.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


Author(s):  
Mariane Beatriz Sordi ◽  
Ariadne Cristiane Cabral da Cruz ◽  
Águedo Aragones ◽  
Mabel Mariela Rodríguez Cordeiro ◽  
Ricardo de Souza Magini

The aim of this study was to synthesize, characterize, and evaluate degradation and biocompatibility of poly(lactic-co-glycolic acid) + hydroxyapatite / β-tricalcium phosphate (PLGA+HA/βTCP) scaffolds incorporating simvastatin (SIM) to verify if this biomaterial might be promising for bone tissue engineering. Samples were obtained by the solvent evaporation technique. Biphasic ceramic particles (70% HA, 30% βTCP) were added to PLGA in a ratio of 1:1. Samples with SIM received 1% (m:m) of this medication. Scaffolds were synthesized in a cylindric-shape and sterilized by ethylene oxide. For degradation analysis, samples were immersed in PBS at 37 °C under constant stirring for 7, 14, 21, and 28 days. Non-degraded samples were taken as reference. Mass variation, scanning electron microscopy, porosity analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry were performed to evaluate physico-chemical properties. Wettability and cytotoxicity tests were conducted to evaluate the biocompatibility. Microscopic images revealed the presence of macro, meso, and micropores in the polymer structure with HA/βTCP particles homogeneously dispersed. Chemical and thermal analyses presented very similar results for both PLGA+HA/βTCP and PLGA+HA/βTCP+SIM. The incorporation of simvastatin improved the hydrophilicity of scaffolds. Additionally, PLGA+HA/βTCP and PLGA+HA/βTCP+SIM scaffolds were biocompatible for osteoblasts and mesenchymal stem cells. In summary, PLGA+HA/βTCP scaffolds incorporating simvastatin presented adequate structural, chemical, thermal, and biological properties for bone tissue engineering.


10.2741/2724 ◽  
2008 ◽  
Vol 13 (13) ◽  
pp. 833 ◽  
Author(s):  
Volker, M. Betz

Sign in / Sign up

Export Citation Format

Share Document