scholarly journals Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics

2020 ◽  
Author(s):  
Sofia Arshavsky-Graham ◽  
Ester Segal
Author(s):  
Michael G. Mauk ◽  
Richard Y. Chiou ◽  
Carlos Ruiz ◽  
Dharma Varapula ◽  
Changchun Liu ◽  
...  

Point-of-care (POC) medical diagnostics tests based on instrumented microfluidic chips are instructive and highly-multidisciplinary projects for undergraduate research and Senior Design. Students can apply their knowledge of fluid mechanics, heat transfer, optics, electronics and microcontrollers, materials, prototyping and systems engineering in translating and adapting a laboratory-based test for use in non-traditional venues. We discuss the design, prototyping, and testing of POC lab-on-a-chip (LOC) systems in an educational setting, where undergraduate students develop and demonstrate novel and practical POC tests. This application area serves as an effective gateway to the medical diagnostics field for engineering students, with opportunities for providing sustainable, appropriate, and ‘green’ technology to the developing world where healthcare infrastructure is lacking.


2021 ◽  
Vol 17 ◽  
Author(s):  
Rajasekhar Chokkareddy ◽  
Suvardhan Kanchi ◽  
Inamuddin

Background: While significant strides have been made to avoid mortality during the treatment of chronic diseases, it is still one of the biggest health-care challenges that have a profound effect on humanity. The development of specific, sensitive, accurate, quick, low-cost, and easy-to-use diagnostic tools is therefore still in urgent demand. Nanodiagnostics is defined as the application of nanotechnology to medical diagnostics that can offer many unique opportunities for more successful and efficient diagnosis and treatment for infectious diseases. Methods: In this review we provide an overview of infectious disease using nanodiagnostics platforms based on nanoparticles, nanodevices for point-of-care (POC) applications. Results: Current state-of-the-art and most promising nanodiagnostics POC technologies, including miniaturized diagnostic tools, nanorobotics and drug delivery systems have been fully examined for the diagnosis of diseases. It also addresses the drawbacks, problems and potential developments of nanodiagnostics in POC applications for chronic diseases. Conclusions: While progress is gaining momentum in this field and many researchers have dedicated their time in developing new smart nanodevices for POC applications for various chronic diseases, the ultimate aim of achieving longterm, reliable and continuous patient monitoring has not yet been achieved. Moreover, the applicability of the manufactured nanodevices to rural patients for on-site diagnosis, cost, and usability are the crucial aspects that require more research, improvements, and potential testing stations. Therefore, more research is needed to develop the demonstrated smart nanodevices and upgrade their applicability to hospitals away from the laboratories.


2019 ◽  
Vol 43 (33) ◽  
pp. 13094-13102
Author(s):  
Giorgia Giovannini ◽  
Vladimir Gubala ◽  
Andrew J. Hall

The rapid and straightforward detection of bacteria in food and human samples is becoming important, particularly in view of the development of point-of-care devices and lab-on-a-chip tools for prevention and treatment of bacterial infections.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 220 ◽  
Author(s):  
Niazul I. Khan ◽  
Edward Song

Aptamers are oligonucleotides or peptides that are selected from a pool of random sequences that exhibit high affinity toward a specific biomolecular species of interest. Therefore, they are ideal for use as recognition elements and ligands for binding to the target. In recent years, aptamers have gained a great deal of attention in the field of biosensing as the next-generation target receptors that could potentially replace the functions of antibodies. Consequently, it is increasingly becoming popular to integrate aptamers into a variety of sensing platforms to enhance specificity and selectivity in analyte detection. Simultaneously, as the fields of lab-on-a-chip (LOC) technology, point-of-care (POC) diagnostics, and personal medicine become topics of great interest, integration of such aptamer-based sensors with LOC devices are showing promising results as evidenced by the recent growth of literature in this area. The focus of this review article is to highlight the recent progress in aptamer-based biosensor development with emphasis on the integration between aptamers and the various forms of LOC devices including microfluidic chips and paper-based microfluidics. As aptamers are extremely versatile in terms of their utilization in different detection principles, a broad range of techniques are covered including electrochemical, optical, colorimetric, and gravimetric sensing as well as surface acoustics waves and transistor-based detection.


2014 ◽  
Vol 106 (2) ◽  
pp. 417a
Author(s):  
Anna Wilkes ◽  
Benjamin Evans

2015 ◽  
Vol 112 (32) ◽  
pp. E4354-E4363 ◽  
Author(s):  
Fatih Inci ◽  
Chiara Filippini ◽  
Murat Baday ◽  
Mehmet Ozgun Ozen ◽  
Semih Calamak ◽  
...  

Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients’ homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE2RD), which addresses all these impediments on a single platform. The NE2RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE2RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE2RD’s broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients’ homes.


Author(s):  
Tsung-Feng Wu ◽  
Sung Hwan Cho ◽  
Yu-Jui Chiu ◽  
Yu-Hwa Lo
Keyword(s):  

Author(s):  
Hoan T. Ngo ◽  
Pietro Strobbia ◽  
Priya Dukes ◽  
Elizabeth Freedman ◽  
Agampodi Swarnapali De Silva Indrasekara ◽  
...  

Biosensors ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 108
Author(s):  
Marc Prante ◽  
Ester Segal ◽  
Thomas Scheper ◽  
Janina Bahnemann ◽  
Johanna Walter

Aptamers, a group of nucleic acids which can specifically bind to a target molecule, have drawn extensive interest over the past few decades. For analytics, aptamers represent a viable alternative to gold-standard antibodies due to their oligonucleic nature combined with advantageous properties, including higher stability in harsh environments and longer shelf-life. Indeed, over the last decade, aptamers have been used in numerous bioanalytical assays and in various point-of-care testing (POCT) platforms. The latter allows for rapid on-site testing and can be performed outside a laboratory by unskilled labor. Aptamer technology for POCT is not limited just to medical diagnostics; it can be used for a range of applications, including environmental monitoring and quality control. In this review, we critically examine the use of aptamers in POCT with an emphasis on their advantages and limitations. We also examine the recent success of aptasensor technology and how these findings pave the way for the analysis of small molecules in POCT and other health-related applications. Finally, the current major limitations of aptamers are discussed, and possible approaches for overcoming these challenges are presented.


Sign in / Sign up

Export Citation Format

Share Document