scholarly journals Lab-on-a-Chip Systems for Aptamer-Based Biosensing

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 220 ◽  
Author(s):  
Niazul I. Khan ◽  
Edward Song

Aptamers are oligonucleotides or peptides that are selected from a pool of random sequences that exhibit high affinity toward a specific biomolecular species of interest. Therefore, they are ideal for use as recognition elements and ligands for binding to the target. In recent years, aptamers have gained a great deal of attention in the field of biosensing as the next-generation target receptors that could potentially replace the functions of antibodies. Consequently, it is increasingly becoming popular to integrate aptamers into a variety of sensing platforms to enhance specificity and selectivity in analyte detection. Simultaneously, as the fields of lab-on-a-chip (LOC) technology, point-of-care (POC) diagnostics, and personal medicine become topics of great interest, integration of such aptamer-based sensors with LOC devices are showing promising results as evidenced by the recent growth of literature in this area. The focus of this review article is to highlight the recent progress in aptamer-based biosensor development with emphasis on the integration between aptamers and the various forms of LOC devices including microfluidic chips and paper-based microfluidics. As aptamers are extremely versatile in terms of their utilization in different detection principles, a broad range of techniques are covered including electrochemical, optical, colorimetric, and gravimetric sensing as well as surface acoustics waves and transistor-based detection.

Author(s):  
Michael G. Mauk ◽  
Richard Y. Chiou ◽  
Carlos Ruiz ◽  
Dharma Varapula ◽  
Changchun Liu ◽  
...  

Point-of-care (POC) medical diagnostics tests based on instrumented microfluidic chips are instructive and highly-multidisciplinary projects for undergraduate research and Senior Design. Students can apply their knowledge of fluid mechanics, heat transfer, optics, electronics and microcontrollers, materials, prototyping and systems engineering in translating and adapting a laboratory-based test for use in non-traditional venues. We discuss the design, prototyping, and testing of POC lab-on-a-chip (LOC) systems in an educational setting, where undergraduate students develop and demonstrate novel and practical POC tests. This application area serves as an effective gateway to the medical diagnostics field for engineering students, with opportunities for providing sustainable, appropriate, and ‘green’ technology to the developing world where healthcare infrastructure is lacking.


2016 ◽  
Vol 99 (4) ◽  
pp. 865-877 ◽  
Author(s):  
Annamaria Ruscito ◽  
McKenzie Smith ◽  
Daniel N Goudreau ◽  
Maria C DeRosa

Abstract Aptamers are single-stranded oligonucleotides with the ability to bind tightly and selectively to a target analyte. High-affinity and specific aptamers for a variety of mycotoxins have been reported over the past decade. Increasingly, these molecular recognition elements are finding applications in biosensors and assays for the detection of mycotoxins in a variety of complex matrixes. This review article highlights the mycotoxin aptamers that are available for mycotoxin detection and the array of biosensing platforms into which they have been incorporated. Key advantages that aptamers have over analogous technology, and areas in which these advantages may be applied for the benefit of practical mycotoxin detection, are also discussed.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1437
Author(s):  
Jing Yi Ong ◽  
Andrew Pike ◽  
Ling Ling Tan

The presence of mycotoxins in foodstuffs and feedstuffs is a serious concern for human health. The detection of mycotoxins is therefore necessary as a preventive action to avoid the harmful contamination of foodstuffs and animal feed. In comparison with the considerable expense of treating contaminated foodstuffs, early detection is a cost-effective way to ensure food safety. The high affinity of bio-recognition molecules to mycotoxins has led to the development of affinity columns for sample pre-treatment and the development of biosensors for the quantitative analysis of mycotoxins. Aptamers are a very attractive class of biological receptors that are currently in great demand for the development of new biosensors. In this review, the improvement in the materials and methodology, and the working principles and performance of both conventional and recently developed methods are discussed. The key features and applications of the fundamental recognition elements, such as antibodies and aptamers are addressed. Recent advances in aptasensors that are based on different electrochemical (EC) transducers are reviewed in detail, especially from the perspective of the diagnostic mechanism; in addition, a brief introduction of some commercially available mycotoxin detection kits is provided.


Author(s):  
M. Dutta ◽  
S. Chilukuru ◽  
L. Ramasamy ◽  
Xiaoshan Zhu ◽  
Jaephil Do ◽  
...  

Author(s):  
Seyed Ali Tabatabaei ◽  
Mohammad Zabetian Targhi

Isolation of microparticles and biological cells on microfluidic chips has received considerable attention due to their applications in numerous areas such as medical and engineering fields. Microparticles separation is of great importance in bioassays due to the need for smaller sample and device size and lower manufacturing costs. In this study, we first explain the concepts of separation and microfluidic science along with their applications in the medical sciences, and then, a conceptual design of a novel inertial microfluidic system is proposed and analyzed. The PDMS spiral microfluidic device was fabricated, and its effects on the separation of particles with sizes similar to biological particles were experimentally analyzed. This separation technique can be used to separate cancer cells from the normal ones in the blood samples. These components required for testing were selected, assembled, and finally, a very affordable microfluidic kit was provided. Different experiments were designed, and the results were analyzed using appropriate software and methods. Separator system tests with polydisperse hollow glass particles (diameter 2–20 µm), and monodisperse Polystyrene particles (diameter 5 & 15 µm), and the results exhibit an acceptable chip performance with 86% of efficiency for both monodisperse particles and polydisperse particles. The microchannel collects particles with an average diameter of 15.8, 9.4, and 5.9 μm at the proposed reservoirs. This chip can be integrated into a more extensive point-of-care diagnostic system to test blood samples.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 826
Author(s):  
Yanting Liu ◽  
Xuming Zhang

This review aims to summarize the recent advances and progress of plasmonic biosensors based on patterned plasmonic nanostructure arrays that are integrated with microfluidic chips for various biomedical detection applications. The plasmonic biosensors have made rapid progress in miniaturization sensors with greatly enhanced performance through the continuous advances in plasmon resonance techniques such as surface plasmon resonance (SPR) and localized SPR (LSPR)-based refractive index sensing, SPR imaging (SPRi), and surface-enhanced Raman scattering (SERS). Meanwhile, microfluidic integration promotes multiplexing opportunities for the plasmonic biosensors in the simultaneous detection of multiple analytes. Particularly, different types of microfluidic-integrated plasmonic biosensor systems based on versatile patterned plasmonic nanostructured arrays were reviewed comprehensively, including their methods and relevant typical works. The microfluidics-based plasmonic biosensors provide a high-throughput platform for the biochemical molecular analysis with the advantages such as ultra-high sensitivity, label-free, and real time performance; thus, they continue to benefit the existing and emerging applications of biomedical studies, chemical analyses, and point-of-care diagnostics.


2021 ◽  
Author(s):  
Aimee Alice Sanford ◽  
Alexandra E Rangel ◽  
Trevor A Feagin ◽  
Robert G Lowery ◽  
Hector S Argueta-Gonzalez ◽  
...  

Aptamers are widely employed as recognition elements in small molecule biosensors due to their ability to recognize small molecule targets with high affinity and selectivity. Structure-switching aptamers are particularly promising...


Author(s):  
Xiangchun Xuan ◽  
Edmond W. K. Young ◽  
Dongqing Li

This work investigated the electrokinetic focusing and dispensing of polystyrene particles and red blood cells on microfluidic chips. Particles or cells were first electrokinetically focused using the merging of focusing streams on the sample stream, and subsequently separated as a result of the focusing. These particles or cells were then selectively dispensed from the focused sample stream using precise application of electrical pulses. The whole process of focusing, separation and dispensing of particles was visualized by a custom-made microscopy system. In particular, the width of the focused fluorescein stream and the accelerated electrophoretic motion of particles and cells were measured in a cross-channel and compared with a proposed analytical model. The electrokinetic manipulation of particles and cells demonstrated in this work can be used for developing integrated lab-on-a-chip devices for studies of cells.


Micromachines ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 516 ◽  
Author(s):  
Veasna Soum ◽  
Sooyong Park ◽  
Albertus Ivan Brilian ◽  
Oh-Sun Kwon ◽  
Kwanwoo Shin

Recent advanced paper-based microfluidic devices provide an alternative technology for the detection of biomarkers by using affordable and portable devices for point-of-care testing (POCT). Programmable paper-based microfluidic devices enable a wide range of biomarker detection with high sensitivity and automation for single- and multi-step assays because they provide better control for manipulating fluid samples. In this review, we examine the advances in programmable microfluidics, i.e., paper-based continuous-flow microfluidic (p-CMF) devices and paper-based digital microfluidic (p-DMF) devices, for biomarker detection. First, we discuss the methods used to fabricate these two types of paper-based microfluidic devices and the strategies for programming fluid delivery and for droplet manipulation. Next, we discuss the use of these programmable paper-based devices for the single- and multi-step detection of biomarkers. Finally, we present the current limitations of paper-based microfluidics for biomarker detection and the outlook for their development.


2019 ◽  
Vol 43 (33) ◽  
pp. 13094-13102
Author(s):  
Giorgia Giovannini ◽  
Vladimir Gubala ◽  
Andrew J. Hall

The rapid and straightforward detection of bacteria in food and human samples is becoming important, particularly in view of the development of point-of-care devices and lab-on-a-chip tools for prevention and treatment of bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document