Person Recognition by Pressure Sensors

Author(s):  
Masafumi Yamada ◽  
Jun Toyama ◽  
Mineichi Kudo
Author(s):  
Reshma P ◽  
Muneer VK ◽  
Muhammed Ilyas P

Face recognition is a challenging task for the researches. It is very useful for personal verification and recognition and also it is very difficult to implement due to all different situation that a human face can be found. This system makes use of the face recognition approach for the computerized attendance marking of students or employees in the room environment without lectures intervention or the employee. This system is very efficient and requires very less maintenance compared to the traditional methods. Among existing methods PCA is the most efficient technique. In this project Holistic based approach is adapted. The system is implemented using MATLAB and provides high accuracy.


Author(s):  
M. S. ASSAD ◽  
◽  
O. G. PENYAZKOV ◽  
I. I. CHERNUHO ◽  
K. ALHUSSAN ◽  
...  

This work is devoted to the study of the dynamics of combustion wave propagation in oxygen-enriched mixtures of n-heptane with air and jet fuel "Jet A-1" in a small-size pulsed detonation combustor (PDC) with a diameter of 20 mm and a length less than 1 m. Experiments are carried out after the PDC reaches a stationary thermal regime when changing the equivalence ratio (ϕ = 0.73-1.89) and the oxygen-to-air ratio ([O2/air] = 0.15-0.60). The velocity of the combustion wave is determined by measuring the propagation time of the flame front between adjacent pressure sensors that form measurement segements along the PDC.


2020 ◽  
Vol 8 (4) ◽  
pp. 296-307
Author(s):  
Konstantin Krestovnikov ◽  
Aleksei Erashov ◽  
Аleksandr Bykov

This paper presents development of pressure sensor array with capacitance-type unit sensors, with scalable number of cells. Different assemblies of unit pressure sensors and their arrays were considered, their characteristics and fabrication methods were investigated. The structure of primary pressure transducer (PPT) array was presented; its operating principle of array was illustrated, calculated reference ratios were derived. The interface circuit, allowing to transform the changes in the primary transducer capacitance into voltage level variations, was proposed. A prototype sensor was implemented; the dependency of output signal power from the applied force was empirically obtained. In the range under 30 N it exhibited a linear pattern. The sensitivity of the array cells to the applied pressure is in the range 134.56..160.35. The measured drift of the output signals from the array cells after 10,000 loading cycles was 1.39%. For developed prototype of the pressure sensor array, based on the experimental data, the average signal-to-noise ratio over the cells was calculated, and equaled 63.47 dB. The proposed prototype was fabricated of easily available materials. It is relatively inexpensive and requires no fine-tuning of each individual cell. Capacitance-type operation type, compared to piezoresistive one, ensures greater stability of the output signal. The scalability and adjustability of cell parameters are achieved with layered sensor structure. The pressure sensor array, presented in this paper, can be utilized in various robotic systems.


Author(s):  
S. A. Adarchin ◽  
A. V. Mazin

Over the past few years, thanks to the success of microprocessor technology, there has been a significant leap in the development and application of automated control systems. In such systems, information obtained from a set of sensors installed on the control object and giving complete information about it is used to form the control action. Improving the accuracy of measurement of their characteristics becomes an urgent task. This paper is considered to study of the processes of degradation of microelectromechanical structures of integral measuring tensometric elements, for example, pressure sensors, expressed in the obtaining of the output characteristics of the sensor for the regulations set forth in the technical specifications. The technique allowing to measure the parameters of the output signal of the strain cell with the help of a special installation is developed. The results of the experiments determined that when using material with a small modulus of elasticity can be used for the planting element, any substrate material of test module. The developed technique can be used in the production and design of the strain gauge, and the sensor as a whole.


2020 ◽  
Vol 96 (3s) ◽  
pp. 450-455
Author(s):  
В.Г. Криштоп ◽  
Д.А. Жевненко ◽  
П.В. Дудкин ◽  
Е.С. Горнев ◽  
В.Г. Попов ◽  
...  

Электрохимические системы очень перспективны для разработки новой элементной базы для микроэлектроники и для использования в широком спектре инженерных задач. Мы разработали новую микроэлектронную технологию для изготовления электрохимических преобразователей (ЭХП) и новые приборы на основе новых электрохимических микроэлектронных чипов. Планарные электрохимические преобразователи могут использоваться в акселерометрах, сейсмических датчиках, датчиках вращения, гидрофонах и датчиках давления. Electrochemical systems are very promising for the development of a new element base for microelectronics, and for use in a wide range of engineering applications. We have developed a new microelectronic technology for manufacturing electrochemical transducers (ECP) and new devices based on new electrochemical microelectronic chips. Planar electrochemical transducers are used in accelerometers, seismic sensors, rotation sensors, hydrophones and pressure sensors.


2018 ◽  
Author(s):  
Natalija Baribina ◽  
Alexander Oks ◽  
Ilze Baltina ◽  
Peteris Eizentals

Sign in / Sign up

Export Citation Format

Share Document