Improved Cell-DEVS Models for Fire Spreading Analysis

Author(s):  
Matthew MacLeod ◽  
Rachid Chreyh ◽  
Gabriel Wainer
Keyword(s):  
2000 ◽  
Vol 30 (8) ◽  
pp. 1318-1328 ◽  
Author(s):  
Jean Nahmias ◽  
Hervé Téphany ◽  
José Duarte ◽  
Sophie Letaconnoux

In the experimental work presented here, fire spread was studied through various laboratory and full-scale models containing different types of combustible and noncombustible materials. We have examined the dynamic behaviour of the flame front and the final state (after extinction) on randomly created heterogeneous zones, both with and without wind. The principal conclusion is that critical thresholds exist, for the ratio between combustible and noncombustible parts, at the transition between nonpropagation and propagation of the fire. This result is common to all types of spreading (with or without wind). The values of the critical thresholds in the nonwind-driven experiments are those of the percolation theory. The critical exponent, obtained for wind-driven experiments, is in accordance with current values suggested by the directed percolation approach.


2021 ◽  
Vol 26 (4) ◽  
pp. 68
Author(s):  
Sara Perestrelo ◽  
Maria C. Grácio ◽  
Nuno A. Ribeiro ◽  
Luís M. Lopes

Forest fires have been a major threat to the environment throughout history. In order to mitigate its consequences, we present, in a first of a series of works, a mathematical model with the purpose of predicting fire spreading in a given land portion divided into patches, considering the area and the rate of spread of each patch as inputs. The rate of spread can be estimated from previous knowledge on fuel availability, weather and terrain conditions. We compute the time duration of the spreading process in a land patch in order to construct and parametrize a landscape network, using cellular automata simulations. We use the multilayer network model to propose a network of networks at the landscape scale, where the nodes are the local patches, each with their own spreading dynamics. We compute some respective network measures and aim, in further work, for the establishment of a fire-break structure according to increasing accuracy simulation results.


2020 ◽  
Vol 20 (2) ◽  
pp. 119-126
Author(s):  
Heewon Seo ◽  
Myungo Yoon ◽  
Dongho Choi ◽  
Daehoi Kim ◽  
Hyungdo Lee

A simulation of the uninsulated duct firestop system was performed to review its application possibility to the building by analyzing the radiant heat transfer and its impact to the surrounding structures in the event of a fire. The simulation targets were divided by the presence or absence of an insulation material (1 m long) as floor and wall duct firestop systems, and the surface temperature, which is an important input data, was based on the existing verification test data. Then, the ambient air temperature, surrounding structure surface temperature, and radiant temperature at some distance from the duct were analyzed through simulations in the modeled virtual spaces. As a result of simulation, it is judged that the application of the uninsulated duct firestop system wrapped by the insulation material can significantly reduce the possibility of fire spreading due to the radiant heat.


2020 ◽  
Vol 10 (5) ◽  
pp. 647-654
Author(s):  
Ahmed A. Alfakhry

The traditional building in Iraq characterised by the using of a certain number of finishing's in external façades like cement plastering, limestone and perforated yellow brick because the raw materials of manufacturing are available locally. Fire spread through the facades is widely recognized as one of the fastest pathways of fire spreading in the buildings, so the appropriate choose of highly performance finishing material against fire will be potentially the main factor in controlling the fire and suppressed it. This study uses computer modeling and fire simulation technology of Pyrosim, FDS and smoke view to compare the difference between the performance of some traditional finishing materials like cement plastering, limestone and perforated yellow brick with the ACPs and their speed to transfer fire from floor to floor if used in multi storey buildings. The study highlighted that traditional finishing materials are more efficient than modern cladding materials and that the performance of ACP-PE is the worst among the materials examined by this study. Moreover, the cement plastering is the worst among the traditional local finishing materials.


Author(s):  
Alexandre Muzy ◽  
Eric Innocenti ◽  
Antoine Aïello ◽  
Jean-François Santucci ◽  
Paul-Antoine Santoni ◽  
...  

Author(s):  
Maryna Zharikova ◽  
Vladimir Sherstjuk

In this chapter, the authors propose an approach to using a heterogeneous team of unmanned aerial vehicles and remote sensing techniques to perform tactical forest firefighting operations. The authors present the three-level architecture of the multi-UAV-based forest firefighting monitoring system; features of patrolling, confirming, and monitoring missions; as well as functions of UAV in such missions. The authors consider an infrastructure for the UAV ground support and equipment used for the UAVs control. The method of the data integration into a fire-spreading model in a real-time DSS for the forest fire response is proposed. The proposed approach has been tested with the multi-UAV team that included three drones for the patrol missions, one helicopter for the confirmation mission, and one octocopter for the monitoring mission. The performance of such multi-UAV team has been studied in the laboratory conditions. The result of the experiment has shown that the proposed approach provides required credibility and efficiency of fire prediction and response.


2005 ◽  
Vol 14 (2) ◽  
pp. 141 ◽  
Author(s):  
Jean-Luc Dupuy ◽  
Dominique Morvan

The propagation of a wildfire through a Mediterranean pine stand was simulated using a multiphase physical model of fire behaviour. The heterogeneous character of the vegetation was taken into account using families of solid particles, i.e. the solid phases (foliage, twigs, grass). The thermal decomposition of the solid fuel by drying and pyrolysis, and the combustion of chars were considered, as well as the radiative and convective heat transfer between the gas and the vegetation. In the gaseous phase, turbulence was modelled using a two transport equations model (RNG k–ϵ) and the rate of combustion, which was assumed to be controlled by the turbulent mixing of fuel and oxygen, was calculated using an eddy dissipation concept. The radiation transfer equation, which includes absorption and emission of both the gas–soot mixture and the vegetation, was solved to calculate the contribution of radiation to the energy balance equations. Numerical solutions were calculated in a two-dimensional domain (vertical plane). Results showed the ability of this approach to simulate the propagation of a crown fire and to test the efficiency of a fuel break with success. The effects of the terrain slope were also tested. Some effects on fire behaviour of vortices resulting from the interaction of the wind flow with the canopy layer are shown.


Sign in / Sign up

Export Citation Format

Share Document