scholarly journals Modelling Forest Fires Using Complex Networks

2021 ◽  
Vol 26 (4) ◽  
pp. 68
Author(s):  
Sara Perestrelo ◽  
Maria C. Grácio ◽  
Nuno A. Ribeiro ◽  
Luís M. Lopes

Forest fires have been a major threat to the environment throughout history. In order to mitigate its consequences, we present, in a first of a series of works, a mathematical model with the purpose of predicting fire spreading in a given land portion divided into patches, considering the area and the rate of spread of each patch as inputs. The rate of spread can be estimated from previous knowledge on fuel availability, weather and terrain conditions. We compute the time duration of the spreading process in a land patch in order to construct and parametrize a landscape network, using cellular automata simulations. We use the multilayer network model to propose a network of networks at the landscape scale, where the nodes are the local patches, each with their own spreading dynamics. We compute some respective network measures and aim, in further work, for the establishment of a fire-break structure according to increasing accuracy simulation results.

Author(s):  
Koyu Satoh ◽  
Naian Liu ◽  
Qiong Liu ◽  
K. T. Yang

It is important to examine the behavior of forest fires and city fires to mitigate the property damages and victims by fires. There have been many previous studies on forest fires where the fire spreading patterns were investigated, utilizing artificial satellite pictures of forest fires, together with the use of corresponding weather data and GIS data. On the other hand, large area city fires are very scarce in the world, particularly in modern cities where high-rise concrete buildings are constructed with sufficient open spaces. Thus, the examples of city fires to be referred are few and detailed investigations of city fires are limited. However, there have still been existing old cities where traditional houses built with flammable material such as wood, maybe historically important, only separated with very small open spacing. Fires may freely spread in those cities, once a big earthquake happens there and then water supply for the fire brigade is damaged in the worst case along with the effect of strong wind. There are some fundamental differences between the forest fires and city fires, as the fuel may distribute either continuously or discretely. For instance, in forest fires, the dead fallen leaves, dry grasses and trees are distributed continuously on the ground, while the wooden houses in cities are discretely distributed with some separation of open spacing, such as roads and gardens. Therefore, the wooden houses neighboring the burning houses with some separation are heated by radiation and flames to elevate the temperatures, thus causing the ignition, and finally reaching a large city fire. The authors have studied the forest fire spread and are planning to start a laboratory experiment of city fire spreading. In the preliminary investigation, a numerical study is made to correlate with the laboratory experiment of city fire propagation, utilizing the three-dimensional CFD simulations. Based on the detailed experimental analysis, the authors are attempting to modify the three dimensional CFD code to predict the forest fires and city fires more precisely, taking into account the thermal heating and ignition processes. In this study, some fundamental information on the city fire propagation has been obtained, particularly to know the safe open spacing distances between the houses in the cities and also the wind speed.


2018 ◽  
Vol 27 (4) ◽  
pp. 241 ◽  
Author(s):  
M. M. Valero ◽  
O. Rios ◽  
E. Pastor ◽  
E. Planas

A variety of remote sensing techniques have been applied to forest fires. However, there is at present no system capable of monitoring an active fire precisely in a totally automated manner. Spaceborne sensors show too coarse spatio-temporal resolutions and all previous studies that extracted fire properties from infrared aerial imagery incorporated manual tasks within the image processing workflow. As a contribution to this topic, this paper presents an algorithm to automatically locate the fuel burning interface of an active wildfire in georeferenced aerial thermal infrared (TIR) imagery. An unsupervised edge detector, built upon the Canny method, was accompanied by the necessary modules for the extraction of line coordinates and the location of the total burned perimeter. The system was validated in different scenarios ranging from laboratory tests to large-scale experimental burns performed under extreme weather conditions. Output accuracy was computed through three common similarity indices and proved acceptable. Computing times were below 1 s per image on average. The produced information was used to measure the temporal evolution of the fire perimeter and automatically generate rate of spread (ROS) fields. Information products were easily exported to standard Geographic Information Systems (GIS), such as GoogleEarth and QGIS. Therefore, this work contributes towards the development of an affordable and totally automated system for operational wildfire surveillance.


2015 ◽  
Vol 24 (7) ◽  
pp. 1008 ◽  
Author(s):  
J. R. Raposo ◽  
S. Cabiddu ◽  
D. X. Viegas ◽  
M. Salis ◽  
J. Sharples

Results from a laboratory-scale investigation of a fire spreading on the windward face of a triangular-section hill of variable shape with wind perpendicular to the ridgeline are reported. They confirm previous observations that the fire enlarges its lateral spread after reaching the ridgeline, entering the leeward face with a much wider front. Reference fire spread velocities were measured and analysed, putting in evidence the importance of the dynamic effect due to flow velocity and its associated horizontal-axis separation vortex strength without dependence on hill geometry. Similar parameters estimated from three forest fires compared favourably with the laboratory-scale measurements.


Author(s):  
Jianwei Li ◽  
Xiaowen Li ◽  
Chongchen Chen ◽  
Huiru Zheng ◽  
Naiyuan Liu

Forest fire is one of the most frequent, fast spreading and destructive natural disasters. Many countries have developed their own fire prediction model and computational systems to predict the fire spreading, however, the user interaction, display effect and prediction accuracy have not yet met the requirements for firefighting in real forest fire events. The forest fire spreading is a complex process affected by multi-factors. Understanding the relationships between these multi-factors and the forest fire spreading trend is vital to predicting the fire spreading promptly and accurately to make the strategy in extinguishing the forest fire. In this paper, we propose and develop a three-dimensional (3D) forest fire spreading simulation system, FFSimulator, to visualize the impact of multi-factors to the fire spread. FFSimultor integrates the multi-factor analysis approach with the FARSITE prediction model to improve the prediction. The FFSimulator developed applies 3D scene organization, template-based vector data mapping and overlaps visualization techniques to provide a 3D dynamic visualization of large-scale forest fire. The 3D multi-factors superposition analysis simulates the impacts of individual factor and multi-factors on the trend of surface fire spreading, which can be used to identify the key sites for the prevention and the control of forest fires. The system has been tested and evaluated using real data of Shanghan forest fire.


2010 ◽  
Vol 47 (2) ◽  
pp. 475-489 ◽  
Author(s):  
Yolanda Pérez ◽  
Elsa Pastor ◽  
Alba Àgueda ◽  
Eulalia Planas

The proposed research work describes a novel fire detecting drone for forest fires. The fire detecting drone helps the fire rescue officers to detect the fire and navigate it. The normal drone is in general high cost and complicated to operate. The proposed drone designed and developed in this work is economical and simple in operation. The weight of the novel drone is also comparatively less than the normal drone. Thermal imaging camera detects the fire and transmits the data to the rescue officer. GPS module sent the exact location of the fired place to the officer. The viewing angle of normal drone camera is about 50°. But the proposed drone provides up to 170° wide angle. When the drone fly’s over the fired area, the camera streams the live situation of the fired to the smart phone through Wi-Fi. Then the location of the affected area is transmitted to the smart phone through GPS module. Then the drone drop CO2 bomb on the fire, which reduce the fire spreading. Then the rescue squad takes charge for the final fire extinguishing.


2020 ◽  
Vol 99 (3) ◽  
pp. 54-61
Author(s):  
V.A. Perminov ◽  
◽  
K.O. Fryanova ◽  

Currently, methods of mathematical modeling are used to study processes in emergency situations. Forest fires are extremely complex and destructive natural phenomena which depend on availability of fuel, meteorological and other conditions. Mathematical model of forest fire is based on an analysis of known experimental data and using concept and methods from reactive media mechanics. In this paper the theoretical study of the problems of crown forest fire spread in windy condition and their thermal impact on the wooden building were carried out. The research was based on numerical solution of two-dimensional Reynolds equations. The boundary-value problem is solved numerically using the method of splitting according to physical processes. A discrete analogue for the system of equations was obtained by means of the control volume method. A study of forest fire spreading made it possible to obtain a detailed picture of the change of the component concentration of gases and temperature fields in forest fire and on the wall of building with time. It let to determine the limiting distances between forest fire and building for possibility of wooden walls ignition for different meteorology conditions, size of building and intensity of fire impact.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1157
Author(s):  
Roberto Bernal Jaquez ◽  
Luis Angel Alarcón Ramos ◽  
Alexander Schaum

The problem of controlling a spreading process in a two-layer multiplex networks in such a way that the extinction state becomes a global attractor is addressed. The problem is formulated in terms of a Markov-chain based susceptible-infected-susceptible (SIS) dynamics in a complex multilayer network. The stabilization of the extinction state for the nonlinear discrete-time model by means of appropriate adaptation of system parameters like transition rates within layers and between layers is analyzed using a dominant linear dynamics yielding global stability results. An answer is provided for the central question about the essential changes in the step from a single to a multilayer network with respect to stability criteria and the number of nodes that need to be controlled. The results derived rigorously using mathematical analysis are verified using statical evaluations about the number of nodes to be controlled and by simulation studies that illustrate the stability property of the multilayer network induced by appropriate control action.


1998 ◽  
Vol 8 (4) ◽  
pp. 227 ◽  
Author(s):  
RJ Williams ◽  
AM Gill ◽  
PHR Moore

In a landscape-scale experiment, fires were lit in replicate catchments 15-20 km2 in area, either early in the dry season (June) or late in the dry season (September) between 1990 and 1994. For each fire, Byram-intensity was determined in representative one ha areas of Eucalyptus miniata – E. tetrodonta open-forest, with a ground stratum dominated by annual grasses. Fuel weights were measured by harvest, fuel heat content was assumed to be constant, and the rate of spread was determined using electronic timers. Fuels consisted primarily of grass and leaf litter, and ranged from 1.5 to 13 t ha-1; in most years, average fuel loads were 2-4 t ha-1. Rates of spread were generally in the range of 0.2-0.8 ms-1. The mean intensity of early dry season fires (2100 kW m-1) was significantly less than that of the late dry season fires (7700 kW m-1), primarily because, in the late dry season, there was more leaf litter, fuels were drier, and fire weather was more extreme. Crown fires, a feature of forest fires of high intensity in southeastern Australia, were not observed in the Kapalga fires. Fire intensity was a very good predictor of both leaf-char height and leaf-scorch height for fires between 100 kW m-1 and 10,000 kW m-1, the range in which the majority of experimental fires fell.


Sign in / Sign up

Export Citation Format

Share Document