Modelling Urban Tree Growth and Ecosystem Services: Review and Perspectives

Author(s):  
T. Rötzer ◽  
A. Moser-Reischl ◽  
M. A. Rahman ◽  
R. Grote ◽  
S. Pauleit ◽  
...  
2021 ◽  
Vol 308-309 ◽  
pp. 108532
Author(s):  
T. Rötzer ◽  
A. Moser-Reischl ◽  
M.A. Rahman ◽  
C. Hartmann ◽  
H. Paeth ◽  
...  

Trees ◽  
2021 ◽  
Author(s):  
H. Pretzsch ◽  
A. Moser-Reischl ◽  
M. A. Rahman ◽  
S. Pauleit ◽  
T. Rötzer

Abstract Key message A model for sustainable planning of urban tree stocks is proposed, incorporating growth, mortality, replacement rates and ecosystem service provision, providing a basis for planning of urban tree stocks. Abstract Many recent studies have improved the knowledge about urban trees, their structures, functions, and ecosystem services. We introduce a concept and model for the sustainable management of urban trees, analogous to the concept of sustainable forestry developed by Carl von Carlowitz and others. The main drivers of the model are species-specific tree diameter growth functions and mortality rates. Based on the initial tree stock and options for the annual replanting, the shift of the distribution of the number of trees per age class can be predicted with progressing time. Structural characteristics such as biomass and leaf area are derived from tree dimensions that can be related to functions such as carbon sequestration or cooling. To demonstrate the potential of the dynamic model, we first show how different initial stocks of trees can be quantitatively assessed by sustainability indicators compared to a target stock. Second, we derive proxy variables for ecosystem services (e.g. biomass for carbon sequestration, leaf area for deposition and shading) from a given distribution of the number of trees per age class. Third, we show by scenario analyses how selected ecosystem services and functions may be improved by combining complementary tree species. We exercise one aspect (cooling) of one ecosystem service (temperature mitigation) as an example. The approach integrates mosaic pieces of knowledge about urban trees, their structures, functions, and resulting ecosystem services. The presented model makes this knowledge available for a sustainable management of urban tree stocks. We discuss the potential and relevance of the developed concept and model for ecologically and economically sustainable planning and management, in view of progressing urbanization and environmental changes.


2017 ◽  
Vol 167 ◽  
pp. 275-287 ◽  
Author(s):  
Craig R. Nitschke ◽  
Scott Nichols ◽  
Kathy Allen ◽  
Cynnamon Dobbs ◽  
Stephen J. Livesley ◽  
...  

2016 ◽  
Vol 44 (1) ◽  
pp. 66-73 ◽  
Author(s):  
EMMA L. GREEN ◽  
FELIX EIGENBROD ◽  
KATE SCHRECKENBERG ◽  
SIMON WILLCOCK

SUMMARYMiombo woodlands supply ecosystem services to support livelihoods in southern Africa, however, rapid deforestation has necessitated greater knowledge of tree growth and off-take rates to understand the sustainability of miombo exploitation. We established 48 tree inventory plots within four villages in southern Malawi, interviewed representatives in these same villages about tree management practices and investigated the impact of climate on vegetation dynamics in the region using the ecosystem modelling framework LPJ-GUESS. Combining our data with the forest yield model MYRLIN revealed considerable variation in growth rates across different land uses; forested lands showed the highest growth rates (1639 [95% confidence interval 1594–1684] kg ha–1 year–1), followed by settlement areas (1453 [95% confidence interval 1376–1530] kg ha–1 year–1). Based on the modelled MYRLIN results, we found that 50% of the villages had insufficient growth rates to meet estimated off-take. Furthermore, the results from LPJ-GUESS indicated that sustainable off-take approaches zero in drought years. Local people have recognized the unsustainable use of natural resources and have begun planting activities in order to ensure that ecosystem services derived from miombo woodlands are available for future generations. Future models should incorporate the impacts of human disturbance and climatic variation on vegetation dynamics; such models should be used to support the development and implementation of sustainable forest management.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 707 ◽  
Author(s):  
Astrid Moser-Reischl ◽  
Thomas Rötzer ◽  
Peter Biber ◽  
Matthias Ulbricht ◽  
Enno Uhl ◽  
...  

Urban tree growth is often affected by reduced water availability, higher temperatures, small and compacted planting pits, as well as high nutrient and pollution inputs. Despite these hindering growth conditions, recent studies found a surprisingly better growth of urban trees compared to trees at rural sites, and an enhanced growth of trees in recent times. We compared urban versus rural growing Sakhalin fir (Abies sachalinensis (F. Schmidt) Mast.) trees in Sapporo, northern Japan and analyzed the growth differences between growing sites and the effects of environmental pollution (NO2, NOX, SO2 and OX) on tree growth. Tree growth was assessed by a dendrochronological study across a gradient from urban to rural sites and related to high detailed environmental pollution data with mixed model approaches and regression analyses. A higher growth of urban trees compared to rural trees was found, along with an overall accelerated growth rate of A. sachalinensis trees over time. Moreover, environmental pollution seems to positively affect tree growth, though with the exception of oxides OX which had strong negative correlations with growth. In conclusion, higher temperatures, changed soil nutrient status, higher risks of water-logging, increased oxide concentrations, as well as higher age negatively affected the growth of rural trees. The future growth of urban A. sachalinensis will provide more insights as to whether the results were induced by environmental pollution and climate or biased on a higher age of rural trees. Nevertheless, the results clearly indicate that environmental pollution, especially in terms of NO2 and NOX poses no threat to urban tree growth in Sapporo.


Author(s):  
Z. Uçar ◽  
R. Eker ◽  
A. Aydin

Abstract. Urban trees and forests are essential components of the urban environment. They can provide numerous ecosystem services and goods, including but not limited to recreational opportunities and aesthetic values, removal of air pollutants, improving air and water quality, providing shade and cooling effect, reducing energy use, and storage of atmospheric CO2. However, urban trees and forests have been in danger of being lost by dense housing resulting from population growth in the cities since the 1950s, leading to increased local temperature, pollution level, and flooding risk. Thus, determining the status of urban trees and forests is necessary for comprehensive understanding and quantifying the ecosystem services and goods. Tree canopy cover is a relatively quick, easy to obtain, and cost-effective urban forestry metric broadly used to estimate ecosystem services and goods of the urban forest. This study aimed to determine urban forest canopy cover areas and monitor the changes between 1984–2015 for the Great Plain Conservation area (GPCA) that has been declared as a conservation Area (GPCA) in 2017, located on the border of Düzce City (Western Black Sea Region of Turkey). Although GPCA is a conservation area for agricultural purposes, it consists of the city center with 250,000 population and most settlement areas. A random point sampling approach, the most common sampling approach, was applied to estimate urban tree canopy cover and their changes over time from historical aerial imageries. Tree canopy cover ranged from 16.0% to 27.4% within the study period. The changes in urban canopy cover between 1984–1999 and 1999–2015 were statistically significant, while there was no statistical difference compared to the changes in tree canopy cover between 1984–2015. The result of the study suggested that an accurate estimate of urban tree canopy cover and monitoring long-term canopy cover changes are essential to determine the current situation and the trends for the future. It will help city planners and policymakers in decision-making processes for the future of urban areas.


2020 ◽  
Author(s):  
Kevin L. Griffin ◽  
Thomas G. Harris ◽  
Sarah Bruner ◽  
Patrick McKenzie ◽  
Jeremy Hise

AbstractBackgroundThe unique environment of urban/suburban areas affects tree growth in surprising and currently unrecognized ways. Real-time monitoring of tree growth could provide novel information about these trees and the myriad ecosystem services they provide.MethodsInternet enabled, high-resolution point dendrometers were installed on four trees in Southampton, NY. The instruments, along with a weather station, streamed data to a project web page that was updated once an hour. (https://ecosensornetwork.com).ResultsRadial growth of spruce began April 14 after the accumulation of 69.7 °C growing degrees days and ended September 7th. Cedar growth began later (4/26), after the accumulation of 160.6 °C and ended later (11/3). During our observations, these three modest suburban trees sequestered 108.3 kg of CO2. Growth took place primarily at night and was best predicted by a combination of air temperature, soil moisture, VPD and interaction terms.ConclusionsThis project’s two-year time series provided insights into the growth of trees in a residential area. Linking tree growth to fluctuations in environmental conditions facilitates the development of a mechanistic predictive understanding useful for ecosystem management and growth forecasting across future altering climates. Live-streaming tree growth data enables a deeper appreciation of the biological activity of trees and the ecosystem services they provide in urban environments and thus can be a powerful tool connecting urban social and ecological systems.


Author(s):  
Daowei Zhang

Reforestation is the natural or intentional restocking of existing forests and woodlands that have been harvested or depleted, and afforestation is the establishing of a forest in an area where there were no trees. For economic and practical purposes, reforestation and afforestation have similar goals and processes and thus can be treated as identical activities. Although reforestation and afforestation have a long history, large-scale reforestation and afforestation activities started with industrialization, which caused scarcity in timber and forest-based ecosystem services. In a unified economic model of reforestation and afforestation, factors influencing investments in reforestation and in afforestation on private and public lands include timber prices, unit reforestation cost, interest rate, the responsiveness of tree growth to silviculture, and the value of nontimber benefits, such as ecosystem services. Market and public policies may facilitate, enhance, or hinder reforestation and afforestation activities, and nontimber benefits are an increasingly important motive for reforestation and, especially, afforestation efforts around the world.


Sign in / Sign up

Export Citation Format

Share Document