scholarly journals Modelling tree growth to determine the sustainability of current off-take from miombo woodland: a case study from rural villages in Malawi

2016 ◽  
Vol 44 (1) ◽  
pp. 66-73 ◽  
Author(s):  
EMMA L. GREEN ◽  
FELIX EIGENBROD ◽  
KATE SCHRECKENBERG ◽  
SIMON WILLCOCK

SUMMARYMiombo woodlands supply ecosystem services to support livelihoods in southern Africa, however, rapid deforestation has necessitated greater knowledge of tree growth and off-take rates to understand the sustainability of miombo exploitation. We established 48 tree inventory plots within four villages in southern Malawi, interviewed representatives in these same villages about tree management practices and investigated the impact of climate on vegetation dynamics in the region using the ecosystem modelling framework LPJ-GUESS. Combining our data with the forest yield model MYRLIN revealed considerable variation in growth rates across different land uses; forested lands showed the highest growth rates (1639 [95% confidence interval 1594–1684] kg ha–1 year–1), followed by settlement areas (1453 [95% confidence interval 1376–1530] kg ha–1 year–1). Based on the modelled MYRLIN results, we found that 50% of the villages had insufficient growth rates to meet estimated off-take. Furthermore, the results from LPJ-GUESS indicated that sustainable off-take approaches zero in drought years. Local people have recognized the unsustainable use of natural resources and have begun planting activities in order to ensure that ecosystem services derived from miombo woodlands are available for future generations. Future models should incorporate the impacts of human disturbance and climatic variation on vegetation dynamics; such models should be used to support the development and implementation of sustainable forest management.

Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 503
Author(s):  
Intan Kurniati Ningsih ◽  
Verina Ingram ◽  
Sini Savilaakso

The Forest Stewardship Council initiated a Forest Certification for Ecosystem Services (ForCES) project from 2011 to 2017 to improve and promote sustainable forest management addressing a range of ecosystem services. Three sites in Indonesia were included in the pilot. Whilst the development of the certification standard was largely the result of a partnership between the certification standard organization, civil society and research organizations, implementation and monitoring of the impact of this sustainability standard will entail interactions with state regulations. This study examined how voluntary certification, other market-based approaches and state regulations concerning ecosystem services in Indonesia interplay, particularly in the agenda setting and negotiation stage. Using the conceptual lenses of transition theory and state and non-state market-based governance, interrelationships between ecosystem services certification and regulations were found to be complementary and antagonistic. The majority of interrelations were complementary and supporting. However, antagonism exists where regulations do not address multiple land uses and when there are contradictions in how state regulations define ecosystem services. There was limited state involvement in developing the ecosystem services certification standard, with no substitution between the voluntary standard and regulations occurring. To scale and transition this innovatory standard from a niche to a sociotechnical regime level, it is recommended that market-driven governance arrangements at farm, forest concession and landscape level are developed in collaboration with national and local governments. Collaboration can create synergies to incentivize the acceptance, adoption and effectiveness of non-state market driven instruments to positively enhance the conservation of ecosystem services.


Author(s):  
Intan Kurniati Ningsih ◽  
Verina Ingram ◽  
Sini Savilaakso

The Forest Stewardship Council initiated a pilot Forest Certification for Ecosystem Services (ForCES) project from 2011 to 2017 to improve and promote sustainable forest management addressing a range of ecosystem services. Three sites in Indonesia were studied in the pilot. Whilst the development of the certification standard was largely by a partnership between the certification standard organization, civil society and research organisations, implementation and monitoring of the impact of this voluntary sustainability standard will entail interaction with state regulations. This study sought to understand how certification and state regulations concerning ecosystem services in Indonesia interplay, particularly in the agenda setting and negotiation stage. Using the conceptual lenses of transition theory and state and non-state market-based governance, the interrelationships between ecosystem services certification and regulations were found to be both complementary, supporting and antagonistic. The majority were complementary. Antagonism occurred where regulations do not accommodate land use issues and due to different contradictory state regulations. The voluntary instruments were developed largely in the absence of state involvement and without any substitution with regulatory standards. Given the increasing proliferation of voluntary market-driven initiatives at farm, forest concession and landscape level, stakeholders developing and managing voluntary standards need to collaborate with national and local governments to create synergy to enable their acceptance, adoption and effectiveness to positively enhance the conservation of ecosystem services through incentivizing market-based instruments.


2021 ◽  
Author(s):  
Giovanna Battipaglia ◽  
Francesco Niccoli ◽  
Arturo Pacheco-Solana

<p>Climate-induced forest mortality is a critical issue in the Mediterranean basin, with major consequences for the functioning of these key ecosystems. Indeed, in Mediterranean ecosystems, where water stress is already the most limiting factor for tree performance, climatic changes are expected to entail an increase in water deficit. In this context, annual growth rings can provide short- (e.g., years) and long-term (e.g., decades) information on how trees respond to drought events. With climate change, <em>Pinus pinaster</em> and <em>Pinus pinea</em> L. are expected to reduce their distribution range in the region, being displaced at low altitudes by more drought tolerant taxa such as sub Mediterranean <em>Quercus</em> spp.</p><p>This study aims was to assess the physiological response of <em>Pinus</em> and <em>Quercus</em> species growing in the Vesuvio National park, located in Southern Italy and where an increase of temperature and drought events has been recorded in the recent years. Our preliminary results underlined the importance of temperature on the tree ring width of all the analyses species. The high temperatures can cause a change in the constant kinetics of the RuBisCo, leading to a consequent decrease in carboxylation rate and thus to a reduction in tree growth. On the other hand, also precipitation seemed to affect the growth of the sampled trees: indeed, in all the chronologies a reduction in growth was found after particular dry years: for example, the low rainfall in 1999 (455 mm/year) determined a drastic decline in growth in 2000 in all the species. In addition to the climatic factors, competition can also play an important role in the growth rate: dendrochronological analyzes have highlighted how stand specific properties (i.e. density, structure and composition) can influence individual tree responses to drought events. The knowledge of those researches should be integrated into sustainable forest management strategies to minimize the potential impacts of climate change on forest ecosystems.</p>


2020 ◽  
Author(s):  
Andrew Nicholas Kadykalo ◽  
Kris Johnson ◽  
Scott McFatridge ◽  
C. Scott Findlay

Although agricultural “best (or beneficial) management practices” (BMPs) first emerged to mitigate agro-environmental resource challenges, they may also enhance ‘non-provisioning’ ecosystem services. The enthusiasm for adopting BMPs partially depends on evidence that doing so will lead to agro-environmental benefits while not substantially reducing crop productivity or farmer income. We survey and synthesize evidence in the existing literature to document the joint effects on agricultural crop yield and 12 ecosystem service (ES) associated with implementation of 5 agricultural BMPs (crop rotations, cover crops, nutrient management, perennial vegetated buffers, reduced or no tillage). We also analyze the prevalence of co-benefits (‘win-win’), tradeoffs, and co-costs (‘lose-lose’) outcomes. On the basis of a set of contextual variables we then develop empirical models that predict the likelihood of co-benefits relative to tradeoffs, and co-costs. We found thirty-six studies investigating 141 combinations of crop yields and non-provisioning ES outcomes (YESs) in the relevant literatures covering the period 1983-2016. The scope of the review is global, but included studies are geographically concentrated in the U.S. Corn Belt (Midwestern United States). In the literature sample, reporting of co-benefits (26%) was much more prevalent than reporting of co-costs (4%) between yields and ES. Tradeoffs most often resulted in a reduction in crop yields and an increase in ES (28%); this was marginally greater than studies reporting a neutral influence on crop yields and an increase in ES (26%). Other Y/ES combinations were uncommon. Mixed-effects models indicated reduced tillage and crop rotations had generally positive associations with YESs. Temporal scale was an informative predictor suggesting studies with longer time scales resulted in greater positive outcomes on YESs, on average. Our results are a step towards identifying those contexts where co-benefits or partial improvement outcomes of BMPs are more likely to be realized, as well as the impact of particular practices on specific ES.


2021 ◽  
Vol 5 ◽  
Author(s):  
Karen Johanna Enciso Valencia ◽  
Álvaro Rincón Castillo ◽  
Daniel Alejandro Ruden ◽  
Stefan Burkart

In many parts of the foothills of the Orinoquía region of Colombia, cattle production takes place on poorly drained soils. The region is dominated by extensive grazing systems of Brachiaira humidicola cv. Humidicola, a grass with high adaptation potential under temporal waterlogging conditions. Inadequate management practices and low soil fertility result in degradation, however, with important negative effects on pasture productivity and the quality and provision of (soil) ecosystem services–a situation that is likely to worsen in the near future due to climate change. Against this background, AGROSAVIA (Corporación Colombiana de Investigación Agropecuaria) selected Arachis pintoi CIAT 22160 cv. Centauro (Centauro) as a promising alternative for the sustainable intensification of livestock production and rehabilitation of degraded areas. This study assesses dual-purpose milk production in the foothills of the Colombian Orinoquía from an economic perspective. We compare two production systems: the Centauro–Brachiaira humidicola cv. Humidicola association (new system) and Brachiaira humidicola cv. Humidicola as a monoculture (traditional system). We used cashflow and risk assessment models to estimate economic indicators. The projections for economic returns consider changes in forage characteristics under regional climate change scenarios RCP (2.6, 8.5). The LIFE-SIM model was used to simulate dairy production. Results show that the inclusion of Centauro has the potential to increase animal productivity and profitability under different market scenarios. The impact of climatic variables on forage production is considerable in both climate change scenarios. Both total area and potential distribution of Centauro could change, and biomass production could decline. Brachiaira humidicola cv. Humidicola showed better persistence due to higher nitrogen levels in soil when grown in association with Centauro. The legume also provides a number of ecosystem services, such as improving soil structure and composition, and also contributes to reducing greenhouse gas emissions. This helps to improve the adaptation and mitigation capacity of the system.


2021 ◽  
Vol 13 (18) ◽  
pp. 10303
Author(s):  
Alissa White ◽  
Joshua W. Faulkner ◽  
David Conner ◽  
Lindsay Barbieri ◽  
E. Carol Adair ◽  
...  

Farmers and policy makers pursue management practices that enhance water quality, increase landscape flood resiliency, and mitigate agriculture’s contribution to climate change, all while remaining economically viable. This study presents a holistic assessment of how two practices influence the supply of these ecosystem services—the use of an aerator prior to manure application in haylands, and the stacked use of manure injection, cover crops, and reduced tillage in corn silage production. Field data are contextualized by semi-structured interviews that identify influences on adoption. Causal loop diagrams then illustrate feedbacks from ecosystem services onto decision making. In our study, unseen nutrient pathways are the least understood, but potentially the most important in determining the impact of a practice on ecosystem services supply. Subsurface runoff accounted for 64% to 92% of measured hydrologic phosphorus export. Average soil surface greenhouse gas flux constituted 38% to 73% of all contributions to the equivalent CO2 footprint of practices, sometimes outweighing carbon sequestration. Farmers identified interest in better understanding unseen nutrient pathways, expressed intrinsic stewardship motivations, but highlighted financial considerations as dominating decision making. Our analysis elevates the importance of financial supports for conservation, and the need for comprehensive understandings of agroecosystem performance that include hard-to-measure pathways.


Author(s):  
Gabriel Damasco ◽  
Mandy Anhalt ◽  
Ricardo O. Perdiz ◽  
Florian Wittmann ◽  
Rafael L. de Assis ◽  
...  

AbstractThe harvesting of açaí berries (palm fruits from the genus Euterpe) in Amazonia has increased over the last 20 years due to a high local and global market demand and triggered by their widely acclaimed health benefits as a ‘superfood’. Although such increase represents a financial boom for local communities, unregulated extraction in Amazonia risks negative environmental effects including biodiversity loss through açai intensification and deforestation. Alternatively, the introduction of certified sustainable agroforestry production programs of açaí has been strategically applied to reduce the exploitation of Amazonian forests. Local açaí producers are required to follow principles of defined sustainable management practices, environmental guidelines, and social behaviors, paying specific attention to fair trade and human rights. In this study we investigate whether sustainable agroforestry and certification effectively promotes biodiversity conservation in Amazonia. To address this question, we conducted a forestry inventory in two hectares of long-term certified açai harvesting areas to gain further knowledge on the plant diversity and forest structure in açaí managed forests and to understand the contribution of certification towards sustainable forest management. On average, we found that certified managed forests harbor 50% more tree species than non-certified açaí groves. Trees in certified areas also have significantly higher mean basal area, meaning larger and hence older individuals are more likely to be protected. Certified harvesting sites also harbor dense populations of threatened species as classified by the International Union for Conservation of Nature (e.g. Virola surinamensis, classified as ‘endangered’). Besides increasing the knowledge of plant diversity in açaí managed areas, we present baseline information for monitoring the impact of harvesting activities in natural ecosystems in Amazonia.


2021 ◽  
Author(s):  
Camilla Andersson ◽  

<p>Biodiversity includes any type of living variation, from the ecosystem level to genetic variation within organisms. The greatest threats to biodiversity is climate change, destruction of habitats and other human activities. High-altitude mountain regions are pristine environments, with historically small impacts from air pollution, but at risk of being disproportionately impacted by climate change. We focus on three mountainous regions: the Scandinavian Mountains, the Guadarrama Mountains in Spain, and the Pyrenees in France, Andorra and Spain. We study the impact of drivers of change of biodiversity such as future climate change, increased incidences of wild fires, emissions from new shipping routes in the Arctic as ice sheets are melting, human impacts on land use and management practices (such as reindeer grazing) and air pollution.</p><p>We simulate future climate change using WRF and a convective permitting climate model, HARMONIE-Climate, with a spatial resolution of 3km. The high resolution strongly improves the representation of precipitation compared to coarser scale simulations (Lind et al., 2020). We use these simulations to develop future scenarios of air pollution load, using two well established chemistry transport models (MATCH and CHIMERE; Marécal et al., 2015). These climate and air pollution scenarios are subsequently used, together with management scenarios, to develop scenarios for biodiversity and ecosystem services. These scenarios are developed applying a process-based dynamic vegetation and biogeochemistry model, LPJ-GUESS (Smith et al., 2014). </p><p>The scenarios, representing mid-21<sup>st</sup> century, will be made available through a web-based planning tool, where local stakeholders in each region can explore the project results to understand how scenarios of climate change, air pollution and policy development will affect these ecosystems. Local stakeholders are involved throughout the project, such as reindeer herder communities, regional county boards and national authorities, and in a time of changing climate and a global pandemic we have learned the necessity for flexibility in such interactions.</p><p> </p><p>References</p><p>Lind et al. 2020., Climate Dynamics 55, 1893-1912.</p><p>Marécal et al., 2015. Geosci. Mod. Dev. 8, 2777-2813.</p><p>Smith et al. 2014 Biogeosciences 11, 2027-2054.</p>


Sign in / Sign up

Export Citation Format

Share Document