The influence of climate and drought on urban tree growth in southeast Australia and the implications for future growth under climate change

2017 ◽  
Vol 167 ◽  
pp. 275-287 ◽  
Author(s):  
Craig R. Nitschke ◽  
Scott Nichols ◽  
Kathy Allen ◽  
Cynnamon Dobbs ◽  
Stephen J. Livesley ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1015
Author(s):  
Xuan Wu ◽  
Liang Jiao ◽  
Dashi Du ◽  
Changliang Qi ◽  
Ruhong Xue

It is important to explore the responses of radial tree growth in different regions to understand growth patterns and to enhance forest management and protection with climate change. We constructed tree ring width chronologies of Picea crassifolia from different regions of the Qilian Mountains of northwest China. We used Pearson correlation and moving correlation to analyze the main climate factors limiting radial growth of trees and the temporal stability of the growth–climate relationship, while spatial correlation is the result of further testing the first two terms in space. The conclusions were as follows: (1) Radial growth had different trends, showing an increasing followed by a decreasing trend in the central region, a continuously increasing trend in the eastern region, and a gradually decreasing trend in the isolated mountain. (2) Radial tree growth in the central region and isolated mountains was constrained by drought stress, and tree growth in the central region was significantly negatively correlated with growing season temperature. Isolated mountains showed a significant negative correlation with mean minimum of growing season and a significant positive correlation with total precipitation. (3) Temporal dynamic responses of radial growth in the central region to the temperatures and SPEI (the standardized precipitation evapotranspiration index) in the growing season were unstable, the isolated mountains to total precipitation was unstable, and that to SPEI was stable. The results of this study suggest that scientific management and maintenance plans of the forest ecosystem should be developed according to the response and growth patterns of the Qinghai spruce to climate change in different regions of the Qilian Mountains.


Ecosystems ◽  
2021 ◽  
Author(s):  
Laura Marqués ◽  
Drew M. P. Peltier ◽  
J. Julio Camarero ◽  
Miguel A. Zavala ◽  
Jaime Madrigal-González ◽  
...  

AbstractLegacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.


2020 ◽  
pp. 103406
Author(s):  
Vladimir Matskovsky ◽  
Alejandro Venegas-González ◽  
René Garreaud ◽  
Fidel A. Roig ◽  
Alvaro G. Gutiérrez ◽  
...  

Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Courtney Peterson ◽  
Leslie Brandt ◽  
Emile Elias ◽  
Sarah Hurteau

Cities across the United States are feeling the heat as they struggle to integrate climate science into on-the-ground decisionmaking regarding urban tree planting and management.


2021 ◽  
Author(s):  
Giovanna Battipaglia ◽  
Francesco Niccoli ◽  
Arturo Pacheco-Solana

<p>Climate-induced forest mortality is a critical issue in the Mediterranean basin, with major consequences for the functioning of these key ecosystems. Indeed, in Mediterranean ecosystems, where water stress is already the most limiting factor for tree performance, climatic changes are expected to entail an increase in water deficit. In this context, annual growth rings can provide short- (e.g., years) and long-term (e.g., decades) information on how trees respond to drought events. With climate change, <em>Pinus pinaster</em> and <em>Pinus pinea</em> L. are expected to reduce their distribution range in the region, being displaced at low altitudes by more drought tolerant taxa such as sub Mediterranean <em>Quercus</em> spp.</p><p>This study aims was to assess the physiological response of <em>Pinus</em> and <em>Quercus</em> species growing in the Vesuvio National park, located in Southern Italy and where an increase of temperature and drought events has been recorded in the recent years. Our preliminary results underlined the importance of temperature on the tree ring width of all the analyses species. The high temperatures can cause a change in the constant kinetics of the RuBisCo, leading to a consequent decrease in carboxylation rate and thus to a reduction in tree growth. On the other hand, also precipitation seemed to affect the growth of the sampled trees: indeed, in all the chronologies a reduction in growth was found after particular dry years: for example, the low rainfall in 1999 (455 mm/year) determined a drastic decline in growth in 2000 in all the species. In addition to the climatic factors, competition can also play an important role in the growth rate: dendrochronological analyzes have highlighted how stand specific properties (i.e. density, structure and composition) can influence individual tree responses to drought events. The knowledge of those researches should be integrated into sustainable forest management strategies to minimize the potential impacts of climate change on forest ecosystems.</p>


2021 ◽  
Author(s):  
Pallavi Goswami ◽  
Arpita Mondal ◽  
Christoph Rüdiger ◽  
Tim J. Peterson

<p>Large-scale climate processes such as the El Nino Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Southern Annular Mode (SAM) influence the hydro-climatology of Southeast Australia (SEA). In the present study, we show that low-flow events in many catchments in SEA are significantly influenced by variability in these climate drivers. Extreme value distributions and Generalised Linear Models (GLMs) are used here to model low-flow characteristics such as intensity, duration and frequency with respect to these climate drivers. Further, we study how the future projections of ENSO, IOD and SAM are likely to evolve under climate change by examining the projected values of their representative indices and how they will impact low-flow events in the region. It is found that the future dry phases of these climate drivers are likely to be more dry than those in the historic period. This in turn is expected to lead to intensification of low-flow events in the future, resulting in lower availability of fresh water during occurrences of the dry phases of these climate drivers. Thus, climate change in the future is expected to significantly influence future low-flow events in the region thereby making it even more crucial for water managers to adequately manage and ensure water availability.</p><p><br>Keywords: low-flows, ENSO, IOD, SAM, Extreme Value Theory, Generalised Linear Models, Southeast Australia, CMIP5, RCP8.5.</p>


Author(s):  
T. Rötzer ◽  
A. Moser-Reischl ◽  
M. A. Rahman ◽  
R. Grote ◽  
S. Pauleit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document