Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 122
Author(s):  
Rudolf Golubich ◽  
Manfried Faber

The center vortex model of quantum-chromodynamics can explain confinement and chiral symmetry breaking. We present a possible resolution for problems of the vortex detection in smooth configurations and discuss improvements for the detection of center vortices.


Climate ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 39
Author(s):  
Oleg Onishchenko ◽  
Viktor Fedun ◽  
Wendell Horton ◽  
Oleg Pokhotelov ◽  
Natalia Astafieva ◽  
...  

A new model of an axially-symmetric stationary concentrated vortex for an inviscid incompressible flow is presented as an exact solution of the Euler equations. In this new model, the vortex is exponentially localised, not only in the radial direction, but also in height. This new model of stationary concentrated vortex arises when the radial flow, which concentrates vorticity in a narrow column around the axis of symmetry, is balanced by vortex advection along the symmetry axis. Unlike previous models, vortex velocity, vorticity and pressure are characterised not only by a characteristic vortex radius, but also by a characteristic vortex height. The vortex structure in the radial direction has two distinct regions defined by the internal and external parts: in the inner part the vortex flow is directed upward, and in the outer part it is downward. The vortex structure in the vertical direction can be divided into the bottom and top regions. At the bottom of the vortex the flow is centripetal and at the top it is centrifugal. Furthermore, at the top of the vortex the previously ascending fluid starts to descend. It is shown that this new model of a vortex is in good agreement with the results of field observations of dust vortices in the Earth’s atmosphere.


1976 ◽  
Author(s):  
J. HARDIN ◽  
J. MASON
Keyword(s):  

Polar Biology ◽  
2021 ◽  
Author(s):  
Carola Rackete ◽  
Sally Poncet ◽  
Stephanie D. Good ◽  
Richard A. Phillips ◽  
Ken Passfield ◽  
...  

AbstractThe wandering albatross, Diomedea exulans, is a globally threatened species breeding at a number of sites within the Southern Ocean. Across the South Georgia archipelago, there are differences in population trends even at closely located colonies. Between 1999 and 2018 the largest colony, at Bird Island, declined at 3.01% per annum, while in the Bay of Isles, the decline was 1.44% per annum. Using mean demographic rates from a 31-year study at Bird Island and an 11-year study of breeding success at Prion Island in the Bay of Isles in a VORTEX model, we show that differences in breeding success do not fully explain observed differences in population trends. Other potential contributing factors are differential use of foraging areas, with possible knock-on effects on adult body condition, provisioning rate and breeding success, or on bycatch rates of adults or immatures.


Author(s):  
Zhenping Liu ◽  
James C. Hill ◽  
Rodney O. Fox ◽  
Michael G. Olsen

Flash Nanoprecipitation (FNP) is a technique to produce monodisperse functional nanoparticles through rapidly mixing a saturated solution and a non-solvent. Multi-inlet vortex reactors (MIVR) have been effectively applied to FNP due to their ability to provide both rapid mixing and the flexibility of inlet flow conditions. Until recently, only micro-scale MIVRs have been demonstrated to be effective in FNP. A scaled-up MIVR could potentially generate large quantities of functional nanoparticles, giving FNP wider applicability in the industry. In the present research, turbulent mixing inside a scaled-up, macro-scale MIVR was measured by stereoscopic particle image velocimetry (SPIV). Reynolds number of this reactor is defined based on the bulk inlet velocity, ranging from 3290 to 8225. It is the first time that the three-dimensional velocity field of a MIVR was experimentally measured. The influence of Reynolds number on mean velocity becomes more linear as Reynolds number increases. An analytical vortex model was proposed to well describe the mean velocity profile. The turbulent characteristics such as turbulent kinematic energy and Reynolds stress are also presented. The wandering motion of vortex center was found to have a significant contribution to the turbulent kinetic energy of flow near the center area.


1984 ◽  
Vol 146 ◽  
pp. 331-345 ◽  
Author(s):  
I. G. Bromilow ◽  
R. R. Clements

Flow visualization has shown that the interaction of line vortices is a combination of tearing, elongation and rotation, the extent of each depending upon the flow conditions. A discrete-vortex model is used to study the interaction of two and three growing line vortices of different strengths and to assess the suitability of the method for such simulation.Many of the features observed in experimental studies of shear layers are reproduced. The controlled study shows the importance and rapidity of the tearing process under certain conditions.


1992 ◽  
Vol 4 (5) ◽  
pp. 1036-1039 ◽  
Author(s):  
R. Benzi ◽  
M. Colella ◽  
M. Briscolini ◽  
P. Santangelo

1964 ◽  
Vol 8 (05) ◽  
pp. 29-38
Author(s):  
Michael D. Greenberg

The lifting-surface integral equation governing the unsteady loading on a marine propeller in a nonuniform free stream is derived using a classical vortex model. The induced downwash is split into a part corresponding to a locally tangent flat finite wing and wake, plus parts corresponding to the effects of the "helicoidal deviation" from this, of the true blade and wake, and the interference from the other blades and their wakes. Strip-type approximations are tolerated on these terms while a lifting-surface formulation is retained for the dominant finite flat-wing portion. A simple numerical example is carried out and these effects are indeed found to be quite small; so small, in fact, that it may suffice to retain only the flat finite-wing terms in practical applications.


Author(s):  
Jean-Jacques Chattot

The problem of the design of a wind turbine for maximum output is addressed from an aerodynamical point of view. It is shown that the optimum inviscid design, based on the Goldstein model, satifies the minimum energy condition of Betz only for light loading. The more general equation governing the optimum is derived and an integral relation is obtained, stating that the optimum solution satisfies the minimum energy condition of Betz in the Trefftz plane “in the average”. The discretization of the problem is detailed, including the viscous correction based on the 2-D viscous profile data. A constraint is added to account for the force on the tower. The minimization problem is solved very efficiently by relaxation. Several optimized solutions are calculated and compared with the NREL rotor, using the same profile, but different chord and twist distributions. In all cases, the optimization produces a more efficient design.


Physica ◽  
1971 ◽  
Vol 55 ◽  
pp. 394-398 ◽  
Author(s):  
M.S. Lubell ◽  
D.M. Kroeger
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document