Phylloplane Yeasts

Author(s):  
Á. Fonseca ◽  
J. Inácio
Keyword(s):  
2002 ◽  
Vol 48 (6) ◽  
pp. 522-529 ◽  
Author(s):  
James W Buck ◽  
Leon L Burpee

The effects of fungicides on population size and the development of fungicide resistance in the phylloplane yeast flora of bentgrass was investigated. In the spring of 2001, azoxystrobin, chlorothalonil, flutolanil, and propiconazole were applied separately over a 6-week period to creeping bentgrass (Agrostis palustris Huds.). Total and fungicide-resistant yeast populations were assessed by dilution plating onto either potato dextrose agar or potato dextrose agar amended with the test fungicides. Total yeast populations in the fungicide- treated plots were significantly lower than the check plots on three out of four sample dates. In the fall, azoxystrobin or propiconazole were applied twice to the bentgrass over 3 weeks. Significantly larger total yeast populations were observed compared with resistant or highly resistant populations for each treatment on every sample date. Total yeast populations were significantly higher in the check plots compared with either the propiconazole- or azoxystrobin-treated plots on the first three of five sample dates. A collection of yeasts (N = 114) with no prior exposure to fungicides were more sensitive to chlorothalonil, propiconazole, flutolanil, and iprodione than a second group (N = 115) isolated from fungicide-treated turfgrass. These results suggest that fungicide resistance among phylloplane yeasts is widespread and could be an important factor in the development of biological control agents for turfgrass diseases.Key words: yeast, biological control, fungicide, resistance, phylloplane.


2008 ◽  
Vol 54 (4) ◽  
pp. 299-304 ◽  
Author(s):  
Shannon S. Nix ◽  
Leon L. Burpee ◽  
Kimberly L. Jackson ◽  
James W. Buck

Six replicate trials were conducted to determine the short-term temporal dynamics and the effects of foliar applications of nutrients on the phylloplane yeast community of tall fescue ( Festuca arundinacea Schreb.). In each trial, 2% sucrose + 0.5% yeast extract solution or sterile deionized water (control) was applied to the experiment plots. Twelve hours post-treatment (at 0600 hours), leaf samples were collected and yeast colony-forming units (cfu) were enumerated by dilution plating. This process was repeated at 1200, 1800, and 2400 hours in each trial. Significant differences were observed between the number of yeast cfu and the time at which the samples were collected. On average, the number of yeast cfu recovered was significantly less at 1800 hours and significantly greatest at 2400 hours when compared with all other sampling times. Averaged over all time intervals, we observed a trend of increased yeast abundance in turf treated with the nutrient solution compared with control treatments. In a separate investigation, atmospheric yeast abundance above the canopy of tall fescue was assessed in the morning (0900) and in the afternoon (1500) using a Thermo Andersen single stage viable particle sampler. In 5 of the 6 trials of this experiment, atmospheric yeast abundance was significantly greater in the morning than in the afternoon. Results suggest the following colonization model: phylloplane yeasts on tall fescue reproduce during the late evening and early morning, stabilize during the late morning and early afternoon through exchange of immigrants and emigrants, and decline during the late afternoon and (or) early evening.


2019 ◽  
Vol 8 (26) ◽  
Author(s):  
Masako Takashima ◽  
Ri-ichiroh Manabe ◽  
Moriya Ohkuma

We report the draft genome sequences of type strains for Dioszegia crocea and its closely related species Dioszegia aurantiaca, which should improve our understanding of the epiphytic phylloplane yeasts. These data will also have implications for the plant microbiome, since Dioszegia is considered a microbial “hub” taxon.


Author(s):  
Hirokazu Ueda ◽  
Jun Tabata ◽  
Yasuyo Seshime ◽  
Kazuo Masaki ◽  
Yuka Sameshima-Yamashita ◽  
...  

Abstract Phylloplane yeast genera Pseudozyma and Cryptococcus secrete biodegradable plastic (BP)-degrading enzymes, termed cutinase-like enzymes (CLEs). Although, CLEs contain highly conserved catalytic sites, the whole protein exhibits ≤ 30% amino acid sequence homology with cutinase. In this study, we analyzed whether CLEs exhibit cutinase activity. Seventeen Cryptococcus magnus strains, which degrade BP at 15 °C, were isolated from leaves, and identified the DNA sequence of the CLE in one of the strains. Cutin was prepared from tomato leaves and treated with CLEs from three Cryptococcus species (C. magnus, Cryptococcus flavus, and Cryptococcus laurentii) and Pseudozyma antarctia (PaE). A typical cutin monomer, 10,16-dihydroxyhexadecanoic acid, was detected in extracts of the reaction solution via gas chromatography-mass spectrometry, showing that cutin was indeed degraded by CLEs. In addition to the aforementioned monomer, separation analysis via thin-layer chromatography detected high-molecular-weight products resulting from the breakdown of cutin by PaE, indicating that PaE acts as an endo-type enzyme.


2004 ◽  
Vol 94 (2) ◽  
pp. 196-202 ◽  
Author(s):  
J. W. Buck

Control of Botrytis cinerea on geranium seedlings was evaluated in treatments with phylloplane yeasts in combination with 10 fungicides used to manage Botrytis blight of ornamental plants. Rhodotorula glutinis PM4 significantly reduced the development of lesions caused by B. cinerea on geranium cotyledons; however, yeast biocontrol efficacy was highly variable between trials. Treatment with the yeast in combination with azoxystrobin or trifloxystrobin at one tenth the labeled rate (7.5 μg a.i. ml-1) or the full labeled rate (7.5 μg a.i. ml-1) reduced lesion development, compared to treatment with the yeast or the fungicide alone. Vinclozolin at half the labeled rate or the full labeled rate (250 or 500 μg a.i. ml-1), in combination with R. glutinis PM4, significantly reduced the development of lesions caused by an isolate of B. cinerea resistant to vinclozolin. Copper hydroxide and iprodione at one-tenth the labeled rates, with or without yeast, were highly effective in limiting lesion development. Mancozeb did not increase the biocontrol efficacy of the yeast, and thiophanate-methyl negatively affected the yeast efficacy. Improved disease control was observed in treatments with vinclozolin at the labeled rate and R. glutinis PM4 at cell densities of 5 × 105 and 1 × 106 cells ml-1, but not 1 × 105 cells ml-1, on seedlings co-inoculated with B. cinerea in a suspension containing 1 × 105 conidia ml-1. Disease control improved in treatments with combinations of vinclozolin and eight other isolates of R. glutinis, two isolates of R. graminis, and two isolates of R. mucilaginosa. Biocontrol was not observed in treatments with two isolates of R. minuta. The combination of yeast and vinclozolin significantly reduced the germination of conidia of B. cinerea and the growth of R. glutinis PM4 in vitro. All combinations of R. glutinis PM4 with azoxystrobin, trifloxystrobin, or vinclozolin provided highly effective and consistent disease control not observed in treatments with the fungicides alone or the yeast alone.


2004 ◽  
Vol 50 (12) ◽  
pp. 1041-1048 ◽  
Author(s):  
Tom W Allen ◽  
Leon L Burpee ◽  
James W Buck

The ability of yeasts to attach to hyphae or conidia of phytopathogenic fungi has been speculated to contribute to biocontrol activity on plant surfaces. Attachment of phylloplane yeasts to Botrytis cinerea, Rhizoctonia solani, and Sclerotinia homoeocarpa was determined using in vitro attachment assays. Yeasts were incubated for 2 d on potato dextrose agar (PDA) prior to experimentation. A total of 292 yeasts cultured on PDA were screened for their ability to attach to conidia of B. cinerea; 260 isolates (89.1%) attached to conidia forming large aggregates of cells, and 22 isolates (7.5%) weakly attached to conidia with 1 or 2 yeast cells attached to a few conidia. Ten yeasts (3.4%), including 8 isolates of Cryptococcus laurentii, 1 isolate of Cryptococcus flavescens, and an unidentified species of Cryptococcus, failed to attach to conidia. All non-attaching yeasts produced copious extracellular polysaccharide (EPS) on PDA. Seventeen yeast isolates did not attach to hyphal fragments of B. cinerea, R. solani, and S. homoeocarpa after a 1 h incubation, but attachment was observed after 24 h. Culture medium, but not culture age, significantly affected the attachment of yeast cells to conidia of B. cinerea. The 10 yeast isolates that did not attach to conidia when grown on agar did attach to conidia (20%–57% of conidia with attached yeast cells) when cultured in liquid medium. Attachment of the biocontrol yeast Rhodotorula glutinis PM4 to conidia of B. cinerea was significantly greater at 1 × 107 yeast cells·mL–1 than at lower concentrations of yeast cells. The ability of yeast cells to attach to fungal conidia or hyphae appears to be a common phenotype among phylloplane yeasts.Key words: adhesion, biological control, Cryptococcus laurentii, Rhodotorula glutinis.


2020 ◽  
Vol 8 (3) ◽  
pp. 362 ◽  
Author(s):  
Parichat Into ◽  
Pannida Khunnamwong ◽  
Sasitorn Jindamoragot ◽  
Somjit Am-in ◽  
Wanwilai Intanoo ◽  
...  

The phylloplane is an important habitat for yeasts and these yeasts may have antagonistic activities against pathogens and could be used as biocontrol agents. To investigate rice phylloplane yeasts, 282 strains were isolated from 89 rice leaf samples and identified as 15 known yeast species in the phylum Ascomycota and 35 known and two potential new species in the phylum Basidiomycota. The majority of rice phylloplane yeasts belonged to the phylum Basidiomycota. The evaluation of antagonistic activities of 83 yeast strains against rice pathogenic fungi Pyricularia oryzae, Rhizoctonia solani, Fusarium moniliforme, Helminthosporium oryzae and Curvularia lunata revealed that 14 strains inhibited these pathogens. Among the antagonistic strains, Torulaspora indica DMKU-RP31, T. indica DMKU-RP35 and Wickerhamomyces anomalus DMKU-RP25 inhibited all rice pathogens tested, and the production of volatile organic compounds, fungal cell wall degrading enzymes and biofilm were the possible antagonistic mechanisms against all rice pathogens tested in vitro. These yeast strains were evaluated for controlling rice sheath blight caused by R. solani in rice plants in the greenhouse and were found to suppress the disease by 60.0–70.3%, whereas 3% validamycin suppressed by 83.8%. Therefore, they have potential for being developed to be used as biocontrol agents for rice sheath blight.


2020 ◽  
Vol 8 (1) ◽  
pp. 80 ◽  
Author(s):  
Parichat Into ◽  
Ana Pontes ◽  
José Paulo Sampaio ◽  
Savitree Limtong

The ecology and diversity of phylloplane yeasts is less well understood in tropical regions than in temperate ones. Therefore, we investigated the yeast diversity associated with the phylloplane of corn, an economically important crop in Thailand, by a culture-dependent method. Thirty-six leaf samples were collected and 217 yeast strains were isolated by plating leaf-washings. The strains were grouped by PCR-fingerprinting and representative strains were identified by analysis of the D1/D2 domain of the large subunit rRNA gene. In total, 212 strains were identified within 10 species in the Ascomycota and 32 species in the Basidiomycota. Five strains represented potential new species in the Basidiomycota, one strain was recently described as Papiliotrema plantarum, and four strains belonged to the genera Vishniacozyma and Rhodotorula. A higher number of strains in the Basidiomycota (81.6%) was obtained. Hannaella sinensis was the species with the highest occurrence. Principal coordinates analysis ordinations of yeast communities revealed that there were no differences in the similarity of the sampling sites. The estimation of the expected species richness showed that the observed species richness was lower than expected. This work indicated that a majority of yeast associated with the phylloplane of corn plant belongs to the phylum Basidiomycota.


Sign in / Sign up

Export Citation Format

Share Document