Homogeneous Fenton and Photo-Fenton Disinfection of Surface and Groundwater

Author(s):  
María Inmaculada Polo-López ◽  
Samira Nahim-Granados ◽  
Pilar Fernández-Ibáñez
Author(s):  
Z.B. Baktybaeva ◽  
R.A. Suleymanov ◽  
T.K. Valeev ◽  
N.R. Rakhmatullin

Carried out ecological and hygienic assessment of pollution of surface and groundwater of mining areas in the Republic of Bashkortostan. Revealed exceeding standards for fishery water bodies and drinking and cultural and community water use, which indicates the potential danger of surface water for the health of the region's population. The greatest relative contribution to the overall pollution of surface water bodies are making manganese (33,0–66,6 %), iron (9,1–15,6 %), calcium (6,5–11,7 %), lead (5,8– 7,2 %). The quality of water used for drinking purposes from decentralized water sources (boreholes, wells, springs), do not always correspond to the hygienic and sanitary-epidemiological requirements. In this case, the highest priority performance of drinking water contamination are increased stiffness, high content of iron, calcium, nitrate, presence cadmium, and hexavalent chromium.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 379-387 ◽  
Author(s):  
S. Mostaghimi ◽  
P. W. McClellan ◽  
R. A. Cooke

The Nomini Creek Watershed/Water Quality monitoring project was initiated in 1985, as part of the Chesapeake Bay Agreement of 1983, to quantify the impacts of agricultural best management practices (BMPs) on improving water quality. The watershed monitoring system was designed to provide a comprehensive assessment of the quality of surface and groundwater as influenced by changes in land use, agronomic, and cultural practices in the watershed over the duration of the project. The primary chemical characteristics monitored include both soluble and sediment-bound nutrients and pesticides in surface and groundwater. Water samples from 8 monitoring wells located in agricultural areas in the watershed were analyzed for 22 pesticides. A total of 20 pesticides have been detected in water samples collected. Atrazine is the most frequently detected pesticide. Detected concentrations of atrazine ranged from 0.03 - 25.56 ppb and occurred in about 26 percent of the samples. Other pesticides were detected at frequencies ranging from 1.6 to 14.2 percent of all samples collected and concentrations between 0.01 and 41.89 ppb. The observed concentrations and spatial distributions of pesticide contamination of groundwater are compared to land use and cropping patterns. Results indicate that BMPs are quite effective in reducing pesticide concentrations in groundwater.


2020 ◽  
Vol 108 (10) ◽  
pp. 799-808
Author(s):  
Mostafa M. Hamed ◽  
Mahmoud M. S. Ali ◽  
Aly A. Helal

AbstractRemoval of 137Cs radionuclides from the environment has engrossed the concern of researchers after Fukushima accident. The leakage of radioactive cesium ions can lead up to surface and groundwater contamination, and this leads to pollution of drinking water sources. In this work, corchorus olitorius stalks has been used as a novel precursor for production of low-cost mesoporous activated carbon (Meso-AC) and HNO3/H2O2-modified Meso-AC (m-Meso-AC). The physicochemical properties of all adsorbents were evaluated. The influences of sorption parameters and presence of some ligands (humic acid, fulvic acid, and EDTA) on the sorption of 137Cs were studied. The maximum 137Cs capacity of m-Meso-AC was found to be 58.74 mg/g. Efficiency of the new adsorbent to remove 137Cs radionuclides from natural waters (tap, river, and groundwater) was investigated. The studies showed that new adsorbent could be used as promising material for the retention of 137Cs from real radioactive waste and natural water samples.


Sign in / Sign up

Export Citation Format

Share Document