HIGH-RESOLUTION SPATIAL AND TEMPORAL MAPPING OF SURFACE AND GROUNDWATER STABLE ISOTOPES ENABLE INSIGHTS INTO HYDROLOGIC PROCESSES AT THE CATCHMENT SCALE

2018 ◽  
Author(s):  
Alison Cole ◽  
◽  
David F. Boutt
2017 ◽  
Vol 13 (12) ◽  
pp. 1771-1790 ◽  
Author(s):  
Ny Riavo Gilbertinie Voarintsoa ◽  
Loren Bruce Railsback ◽  
George Albert Brook ◽  
Lixin Wang ◽  
Gayatri Kathayat ◽  
...  

Abstract. Petrographic features, mineralogy, and stable isotopes from two stalagmites, ANJB-2 and MAJ-5, respectively from Anjohibe and Anjokipoty caves, allow distinction of three intervals of the Holocene in NW Madagascar. The Malagasy early Holocene (between ca. 9.8 and 7.8 ka) and late Holocene (after ca. 1.6 ka) intervals (MEHI and MLHI, respectively) record evidence of stalagmite deposition. The Malagasy middle Holocene interval (MMHI, between ca. 7.8 and 1.6 ka) is marked by a depositional hiatus of ca. 6500 years. Deposition of these stalagmites indicates that the two caves were sufficiently supplied with water to allow stalagmite formation. This suggests that the MEHI and MLHI intervals may have been comparatively wet in NW Madagascar. In contrast, the long-term depositional hiatus during the MMHI implies it was relatively drier than the MEHI and the MLHI. The alternating wet–dry–wet conditions during the Holocene may have been linked to the long-term migrations of the Intertropical Convergence Zone (ITCZ). When the ITCZ's mean position is farther south, NW Madagascar experiences wetter conditions, such as during the MEHI and MLHI, and when it moves north, NW Madagascar climate becomes drier, such as during the MMHI. A similar wet–dry–wet succession during the Holocene has been reported in neighboring locations, such as southeastern Africa. Beyond these three subdivisions, the records also suggest wet conditions around the cold 8.2 ka event, suggesting a causal relationship. However, additional Southern Hemisphere high-resolution data will be needed to confirm this.


2008 ◽  
Vol 12 (1) ◽  
pp. 39-53 ◽  
Author(s):  
M. A. Perry ◽  
J. D. Niemann

Abstract. Spatial patterns of soil moisture cannot be adequately characterized by direct measurement for most practical applications, so interpolation between observations is required. Interpolation of soil moisture is complicated because multiple hydrologic processes can affect soil moisture and these processes can introduce distinct modes of variation into the soil moisture patterns. In this paper, a new method to interpolate soil moisture data is presented. This method accepts a dataset of soil moisture at widely-spaced locations on multiple dates and produces fine-scale patterns of soil moisture on the same dates. The method first uses Empirical Orthogonal Function (EOF) analysis to decompose the dataset into a set of time-invariant patterns of covariation (EOFs) and a set of associated time series (called expansion coefficients or ECs) that indicate the importance of the patterns on each date. The method then uses a statistical test to retain only the most important EOFs, and these EOFs are interpolated to the desired resolution using a standard estimation or interpolation method. The interpolated EOFs are finally combined with the spatial averages and the ECs to construct the fine-scale soil moisture patterns. Using the Tarrawarra dataset, the EOF-based interpolation method is shown to outperform analogous direct interpolation methods, and this improved performance is observed when as few as two observation dates are available. The improved performance occurs because EOF analysis decomposes soil moisture roughly according to the controlling processes and the most important EOFs exhibit distinct but more consistent spatial structures than soil moisture itself. Less predictable variation is also separated into higher order EOFs, which are discarded by the method.


2021 ◽  
Author(s):  
Jeenu Mathai ◽  
Pradeep Mujumdar

Abstract. Streamflow indices are flow descriptors that quantify the streamflow dynamics, which are usually determined for a specific basin and are distinct from other basin features. The flow descriptors are appropriate for large-scale and comparative hydrology studies, independent of statistical assumptions and can distinguish signals that indicate basin behavior over time. In this paper, the characteristic features of the hydrograph's temporal asymmetry due to its different underlying hydrologic processes are primarily highlighted. Streamflow indices linked to each limb of the hydrograph within the time-irreversibility paradigm are distinguished with respect to its processes driving the rising and falling limbs. Various streamflow indices relating the rising and falling limbs, and the catchment attributes such as climate, topography, vegetation, geology and soil are then correlated. Finally, the key attributes governing rising and falling limbs are identified. The novelty of the work is on differentiating hydrographs by their time irreversibility property and offering an alternative way to recognize primary drivers of streamflow hydrographs. A set of streamflow indices at the catchment scale for 671 basins in the Contiguous United States (CONUS) is presented here. These streamflow indices complement the catchment attributes provided earlier (Addor et al., 2017) for the CAMELS data set. A series of spatial maps describing the streamflow indices and their regional variability over the CONUS is illustrated in this study.


2017 ◽  
Author(s):  
Matthias Sprenger ◽  
Doerthe Tetzlaff ◽  
Chris Soulsby

Abstract. Understanding the influence of vegetation on water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use change. We sampled the upper 20 cm of podzolic soils at 5 cm intervals in four sites differing in their vegetation (Scots Pine (Pinus sylvestris) and heather (Calluna sp. and Erica Sp)) and aspect. The sites were located within the Bruntland Burn long-term experimental catchment in the Scottish Highlands; a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of soil samples were analysed for their isotopic composition (δ2H and δ18H) with the direct equilibration method. Our results show that the soil waters in the top soil are, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15–20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes in the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. Based on the kinetic enrichment of the soil water isotopes, we estimated the soil evaporation losses to be about 5 and 10 % of the infiltrating water for soils beneath heather and Scots pine, respectively. The high sampling frequency in time (monthly) and depth (5 cm intervals) revealed high temporal and spatial variability of the isotopic composition of soil waters, which can be critical, when using stable isotopes as tracers to assess plant water uptake patterns within the critical zone or applying them to calibrate tracer-aided hydrological models either at the plot to the catchment scale.


2016 ◽  
Author(s):  
Kristen C Ruegg ◽  
Eric Anderson ◽  
Ryan J Harrigan ◽  
Kristina L Paxton ◽  
Jeff Kelly ◽  
...  

1. Identifying migratory connections across the annual cycle is important for studies of migrant ecology, evolution, and conservation. While recent studies have demonstrated the utility of high-resolution SNP-based genetic markers for identifying population-specific migratory patterns, the accuracy of this approach relative to other intrinsic tagging techniques has not yet been assessed. 2. Here, using a straightforward application of Bayes' Rule, we develop a method for combining inferences from high-resolution genetic markers, stable isotopes, and habitat suitability models, to spatially infer the breeding origin of migrants captured anywhere along their migratory pathway. Using leave-one-out cross validation, we compare the accuracy of this combined approach with the accuracy attained using each source of data independently. 3. Our results indicate that when each method is considered in isolation, the accuracy of genetic assignments far exceeded that of assignments based on stable isotopes or habitat suitability models. However, our joint assignment method consistently resulted in small, but informative increases in accuracy and did help to correct misassignments based on genetic data alone. We demonstrate the utility of the combined method by identifying previously undetectable patterns in the timing of migration in a North American migratory songbird, the Wilson's warbler. 4. Overall, our results support the idea that while genetic data provides the most accurate method for tracking animals using intrinsic markers when each method is considered independently, there is value in combining all three methods. The resulting methods are provided as part of a new computationally-efficient R-package, GIAIH, allowing broad application of our statistical framework to other migratory animal systems.


2021 ◽  
Author(s):  
Marco Borga ◽  
Daniele Penna ◽  
Nasta Paolo ◽  
Comiti Francesco ◽  
Stefano Ferraris ◽  
...  

<p>The Italian initiative WATZON (WATer mixing in the critical ZONe) is a network of instrumented sites, bringing together six pre-existing long-term research observatories monitoring different compartments of the Critical Zone - the Earth's permeable near-surface layer from the tops of the trees to the bottom of the groundwater.  These observatories cover different climatic and physiographic characteristics over the country, providing information over a climate and eco-hydrologic transect connecting the Mediterranean to the Alps. With specific initial scientific questions, monitoring strategies, databases, and modeling activities, the WATZON observatories and sites is well representative of the heterogeneity of the critical zone and of the scientific communities studying it. Despite this diversity, all WATZON sites share a common eco-hydrologic monitoring and modelling program with three main objectives:</p><p>1) assessing the description of water mixing process across the critical zone by using integrated high-resolution isotopic, geophysical and hydrometeorological measurements from point to catchment scale, under different physiographic conditions and climate forcing;</p><p>2) testing water exchange mechanisms between subsurface reservoirs and vegetation, and assessing ecohydrological dynamics in different environments by coupling the high-resolution data set from different critical zone study sites of the initiative with advanced ecohydrological models at multiple spatial scales;</p><p>3) developing a process-based conceptual framework of ecohydrological processes in the critical zone to translate scientific knowledge into evidence to support policy and management decisions concerning water and land use in forested and agricultural ecosystems.</p><p>This work provides an overview of the WATZON network, its objectives, scientific questions, and data management, with a specific focus on existing initiatives for linking data and models based on WATZON data.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document