Hydrometeorological Conditions

Author(s):  
Aleksey N. Kosarev ◽  
Viktor S. Arkhipkin ◽  
Galina V. Surkova
2003 ◽  
Vol 69 (9) ◽  
pp. 5555-5562 ◽  
Author(s):  
Richard L. Whitman ◽  
Meredith B. Nevers

ABSTRACT Swimming advisories due to excessive Escherichia coli concentrations are common at 63rd Street Beach, Chicago, Ill. An intensive study was undertaken to characterize the source and fate of E. coli in beach water and sand at the beach. From April through September 2000, water and sand samples were collected daily or twice daily at two depths on three consecutive days per week (water samples, n = 1,747; sand samples, n = 858); hydrometeorological conditions and bird and bather distributions were also recorded. E. coli concentrations in sand and water were significantly correlated, with the highest concentration being found in foreshore sand, followed by those in submerged sediment and water of increasing depth. Gull contributions to E. coli densities in sand and water were most apparent on the day following gull activity in a given area. E. coli recolonized newly placed foreshore sand within 2 weeks. Analysis of variance, correlation, cluster analyses, concentration gradients, temporal-spatial distribution, demographic patterns, and DNA fingerprinting suggest that E. coli may be able to sustain population density in temperate beach sand during summer months without external inputs. This research presents evidence that foreshore beach sand (i) plays a major role in bacterial lake water quality, (ii) is an important non-point source of E. coli to lake water rather than a net sink, (iii) may be environmentally, and perhaps hygienically, problematic, and (iv) is possibly capable of supporting an autochthonous, high density of indicator bacteria for sustained periods, independent of lake, human, or animal input.


2009 ◽  
Vol 408 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Sakari Sarkkola ◽  
Harri Koivusalo ◽  
Ari Laurén ◽  
Pirkko Kortelainen ◽  
Tuija Mattsson ◽  
...  

2008 ◽  
Vol 12 (6) ◽  
pp. 1257-1271 ◽  
Author(s):  
N. Montaldo ◽  
J. D. Albertson ◽  
M. Mancini

Abstract. Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFTs, e.g. grass and woody vegetation) competing for water. Mediterranean ecosystems are also commonly characterized by strong inter-annual rainfall variability, which influences the distributions of PFTs that vary spatially and temporally. An extensive field campaign in a Mediterranean setting was performed with the objective to investigate interactions between vegetation dynamics, soil water budget and land-surface fluxes in a water-limited ecosystem. Also a vegetation dynamic model (VDM) is coupled to a 3-component (bare soil, grass and woody vegetation) Land surface model (LSM). The case study is in Orroli, situated in the mid-west of Sardegna within the Flumendosa river basin. The landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. Land surface fluxes, soil moisture and vegetation growth were monitored during the May 2003–June 2006 period. Interestingly, hydrometeorological conditions of the monitored years strongly differ, with dry and wet years in turn, such that a wide range of hydrometeorological conditions can be analyzed. The coupled VDM-LSM model is successfully tested for the case study, demonstrating high model performance for the wide range of eco-hydrologic conditions. Results demonstrate also that vegetation dynamics are strongly influenced by the inter-annual variability of atmospheric forcing, with grass leaf area index changing significantly each spring season according to seasonal rainfall amount.


2014 ◽  
Vol 18 (10) ◽  
pp. 4207-4222 ◽  
Author(s):  
F. Habets ◽  
E. Philippe ◽  
E. Martin ◽  
C. H. David ◽  
F. Leseur

Abstract. The repetition of droughts in France has led to a growing demand for irrigation water and consequently to an increase in requests for the construction of small farm dams. Although such dams are small, their accumulation in a basin affects river flows, because the water collected in these small farm dams is used for irrigation and thus does not contribute to river flow. In order to gain more insight into their impact on the annual and monthly discharges, especially during dry years, a small farm dam model was built and connected to a hydrometeorological model. Several scenarios with different volume capacities, filling catchment sizes and filling periods were tested for such dams. The results were analysed in a small basin in western France, where the pressure for building such dams is high, and then extended to the entire country. It was found that, due to the hydrometeorological conditions (mainly low precipitation compared to other regions in France), the development of small farm dams in north-western France would result in greater decreases in river flows and less efficient filling of small farm dams than in other regions. Therefore, such dams might not be as efficient as expected in supplying water to farmers when needed. Moreover, the ability to fill small farm dams is projected to decrease in a context of climate change, despite the uncertainty on the evolution of precipitation, thus worsening the situation.


2020 ◽  
Author(s):  
Andrzej Kostrzewski ◽  
Marcin Winowski ◽  
Zbigniew Zwoliński

<p>The contemporary morphogenetic system of the South Baltic Sea is clearly changing, both in the annual and long-term weather cycle. Morphogenetic seasons are subject to change, both in terms of duration and types of morphogenetic processes and related forms of relief. The duration of the late-autumn and early-spring season is clearly increasing, which is associated with the occurring climate change and related hydrometeorological conditions. All this means that the morphodynamic types of the South Baltic coast are subject to change, the nature of which is conditioned by geological structure, relief, land cover and, hydrometeorological conditions. Undoubted individuality of the geo-diversity of the South Baltic coast in Poland are postglacial cliff coasts (50 km long).</p><p>Systematic geomorphological mapping of cliff coasts carried out since 1975 which have recently been supported by GIS methods, allow the recognition of cliff coast development mechanisms, emerging landforms and associated morphodynamic types of the South Baltic coast.</p><p>Based on repetitive geomorphological mappings, the following morphodynamic types of the South Baltic cliffs can be distinguished: landslide-type, rock fall-type, talus-type, slump-type and flow-type.</p><p>The basis for the typology of morphodynamic types of cliff coasts was the dominant types of relief forms, including lithology, exposure, land cover and hydrometeorological conditions. It can be unequivocally assumed that the morphodynamic types of the cliff coast is a good indicator feature of monitored morphogenetic systems and their space-time variability.</p><p>The effect of the observed climate change is the increasing frequency of storm surges that initiate denudation processes of an extreme nature. Another consequence of the observed climate changes is the increasing variability of morphodynamic types of the South Baltic cliff coast in the analyzed morphogenetic seasons with a greater share of landslide and rock fall-types.</p>


2020 ◽  
Author(s):  
Jacek Tylkowski ◽  
Andrzej Kostrzewski ◽  
Marcin Winowski

<p>To determine the specificity of functioning the Southern Baltic coasts, it is necessary to identify the hydrometeorological conditions that have the greatest effect on the dynamics of geomorphological processes in detail. For the offshore coastal zone, it is important to determine temporal variability (including trend, cyclicality and seasonality) and spatial diversity (i.e. for cliff and dune coasts) of occurrence of main hydrometeorological and geomorphological processes and events. Among hydrometeorological and geomorphological factors - which are decisive for violent, intense and sometimes irreversible changes in the natural environment - extreme events play an important and sometimes dominant role (Tylkowski, Hojan 2018).</p><p>Geomorphological changes of the cliff coast depend mainly on the dynamics of marine and slope erosion. The high sea level that occurs during storm swells and intense precipitation lead to the transformation of the cliff coast, which is seen in the retraction of the cliff crown, among others (Kostrzewski et al. 2015).</p><p>The purpose of the work was to determine the temporal variability of hydrometeorological conditions, which have the greatest effect on the dynamics of the erosion of the cliff shores of the Wolin island. Hydrometeorological conditions from 1985 – 2019 period were compared to the annual measurements of the cliff crown retraction, which were carried out on 5 test sections in the coastal zone of the Pomeranian Bay on the island of Wolin. The work indicates the occurrence of above-average and extreme hydrometeorological events that potentially favoured the occurrence of erosive processes, e.g. mass movements, slopewash and aeolian erosion.</p><p>Using ARIMA modelling, time decomposition of hydrometeorological conditions was made and their short-term forecasts were formulated. The study determined non-seasonal and seasonal parameters that determine the occurrence of current and future meteorological and marine conditions. What is more, spatial differences in the scope of identification of the features of the analysed time series, estimation of parameters of selected models and the formulated forecast are indicated (Tylkowski, Hojan 2019).</p><p> </p><p> </p><p>References</p><p>Tylkowski J., Hojan M., 2018. Threshold values of extreme hydrometeorological events on the Polish Baltic coast. Water 10(10), 1337. doi:10.3390/w10101337</p><p>Kostrzewski A., Zwoliński Z., Winowski M., Tylkowski J., Samołyk M., 2015. Cliff top recesion rate and cliff hazards for the sea coast of Wolin Island (Southern Baltic). Baltica 28(2): 109-120. doi:10.5200/baltica.2015.28.10</p><p>Tylkowski J., Hojan M., 2019: Time decomposition and short-term forecasting of hydrometeorological conditions in the South Baltic coastal zone of Poland. Geosciences 9(68). doi.org/10.3390/geosciences9020068</p>


Sign in / Sign up

Export Citation Format

Share Document