Identification of Synthetic Lethal Interactions Using High-Throughput, Arrayed CRISPR/Cas9-Based Platforms

2021 ◽  
pp. 135-149
Author(s):  
MacKenzie J. MacAuley ◽  
Omar Abuhussein ◽  
Frederick S. Vizeacoumar
Author(s):  
Madeleine Hewish ◽  
Chris J. Lord ◽  
Sarah A. Martin ◽  
David Cunningham ◽  
Alan Ashworth

2017 ◽  
Vol 17 (4) ◽  
pp. 304-310 ◽  
Author(s):  
Xinwei Geng ◽  
Xiaohui Wang ◽  
Dan Zhu ◽  
Songmin Ying

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicola A. Thompson ◽  
Marco Ranzani ◽  
Louise van der Weyden ◽  
Vivek Iyer ◽  
Victoria Offord ◽  
...  

AbstractGenetic redundancy has evolved as a way for human cells to survive the loss of genes that are single copy and essential in other organisms, but also allows tumours to survive despite having highly rearranged genomes. In this study we CRISPR screen 1191 gene pairs, including paralogues and known and predicted synthetic lethal interactions to identify 105 gene combinations whose co-disruption results in a loss of cellular fitness. 27 pairs influence fitness across multiple cell lines including the paralogues FAM50A/FAM50B, two genes of unknown function. Silencing of FAM50B occurs across a range of tumour types and in this context disruption of FAM50A reduces cellular fitness whilst promoting micronucleus formation and extensive perturbation of transcriptional programmes. Our studies reveal the fitness effects of FAM50A/FAM50B in cancer cells.


2020 ◽  
Author(s):  
Shikha S. Sheth ◽  
Danielle R. Cook ◽  
Samantha D. Strasser ◽  
Timothy D. Martin ◽  
Sneha Menon ◽  
...  

2021 ◽  
Author(s):  
Iñigo Apaolaza ◽  
Edurne San José-Enériz ◽  
Luis Valcarcel ◽  
Xabier Agirre ◽  
Felipe Prosper ◽  
...  

Synthetic Lethality (SL) is a promising concept in cancer research. A number of computational methods have been developed to predict SL in cancer metabolism, among which our network-based computational approach, based on genetic Minimal Cut Sets (gMCSs), can be found. A major challenge of these approaches to SL is to systematically consider tumor environment, which is particularly relevant in cancer metabolism. Here, we propose a novel definition of SL for cancer metabolism that integrates genetic interactions and nutrient availability in the environment. We extend our gMCSs approach to determine this new family of metabolic synthetic lethal interactions. A computational and experimental proof-of-concept is presented for predicting the lethality of dihydrofolate reductase inhibition in different environments. Finally, our novel approach is applied to identify extracellular nutrient dependences of tumor cells, elucidating cholesterol and myo-inositol depletion as potential vulnerabilities in different malignancies.


Genetics ◽  
2020 ◽  
Vol 214 (4) ◽  
pp. 869-893 ◽  
Author(s):  
Tatsuya Tsukamoto ◽  
Micah D. Gearhart ◽  
Seongseop Kim ◽  
Gemechu Mekonnen ◽  
Caroline A. Spike ◽  
...  

Mutations affecting spliceosomal proteins are frequently found in hematological malignancies, including myelodysplastic syndromes and acute myeloid leukemia (AML). DDX41/Abstrakt is a metazoan-specific spliceosomal DEAD-box RNA helicase that is recurrently mutated in inherited myelodysplastic syndromes and in relapsing cases of AML. The genetic properties and genomic impacts of disease-causing missense mutations in DDX41 and other spliceosomal proteins have been uncertain. Here, we conduct a comprehensive analysis of the Caenorhabditis elegans DDX41 ortholog, SACY-1. Biochemical analyses defined SACY-1 as a component of the C. elegans spliceosome, and genetic analyses revealed synthetic lethal interactions with spliceosomal components. We used the auxin-inducible degradation system to analyze the consequence of SACY-1 depletion on the transcriptome using RNA sequencing. SACY-1 depletion impacts the transcriptome through splicing-dependent and splicing-independent mechanisms. Altered 3′ splice site usage represents the predominant splicing defect observed upon SACY-1 depletion, consistent with a role for SACY-1 in the second step of splicing. Missplicing events appear more prevalent in the soma than the germline, suggesting that surveillance mechanisms protect the germline from aberrant splicing. The transcriptome changes observed after SACY-1 depletion suggest that disruption of the spliceosome induces a stress response, which could contribute to the cellular phenotypes conferred by sacy-1 mutant alleles. Multiple sacy-1/ddx41 missense mutations, including the R525H human oncogenic variant, confer antimorphic activity, suggesting that their incorporation into the spliceosome is detrimental. Antagonistic variants that perturb the function of the spliceosome may be relevant to the disease-causing mutations, including DDX41, affecting highly conserved components of the spliceosome in humans.


Sign in / Sign up

Export Citation Format

Share Document