Multiparameter Flow Cytometry for Detailed Characterization of Peritoneal Immune Cells from Patients with Ovarian Cancer

Author(s):  
Jessica Vazquez ◽  
Dagna Sheerar ◽  
Aleksandar K. Stanic ◽  
Manish S. Patankar
2010 ◽  
Vol 138 (5) ◽  
pp. S-621
Author(s):  
Kimberly A. Zins ◽  
Tamas Ordog ◽  
Michael R. Bardsley ◽  
Gianrico Farrugia ◽  
Joseph H. Szurszewski ◽  
...  

2006 ◽  
Vol 69A (4) ◽  
pp. 266-272 ◽  
Author(s):  
Edward A. G. Elloway ◽  
Roger A. Bird ◽  
Christopher J. Hewitt ◽  
Steven L. Kelly ◽  
Stephen N. Smith

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 132-132
Author(s):  
Constance Regina Baer ◽  
Frank Dicker ◽  
Wolfgang Kern ◽  
Torsten Haferlach ◽  
Claudia Haferlach

Abstract Introduction: MYD88 (Myeloid Differentiation Primary Response 88) mutations are the most common genetic aberration in Waldenström's macroglobulinemia/lymphoplasmacytic lymphoma (LPL). Since the initial description of MYD88 mutations in LPL, the detection has gained great importance in diagnosing the disease. However, in some patients with other B cell malignancies, including chronic lymphocytic leukemia (CLL), MYD88 mutations are detectable. Aim: We describe the molecular and cytogenetic profile of MYD88 mutated LPL in comparison to CLL, in order to identify aberration patterns potentially useful for diagnostic purposes. Patients and Methods: We analyzed bone marrow samples of 78 LPL patients for MYD88 by highly sensitive allele specific PCR (ASP) for the L265P mutation and by next-generation sequencing (NGS) for MYD88 and CXCR4 (Chemokine (C-X-C Motif) Receptor 4) mutations. For CLL, 784 blood or bone marrow samples were sequenced for MYD88 (by NGS), IGHV, TP53, NOTCH1 and SF3B1 by Sanger or NGS as well as the MYD88 mutated CLL cases for CXCR4. For all samples, cytogenetic and multiparameter flow cytometry data was available. Results: In LPL, 68/78 patients (87%) harbored a MYD88 mutation. In 13 cases with low bone marrow infiltration (median: 3%; range: 1-6%), the MYD88 mutation was detected by ASP only and not by NGS. However, one case was identified by NGS only because of a non-L265P mutation, which cannot be detected by ASP (1/68; 1%). In contrast, in CLL only 17/784 (2%) carried a MYD88 mutation. Interestingly, 5/17 (29%) were non-L265P mutations. Of the MYD88 mutated LPL, 17/68 (25%) carried a genetic lesion in the C-terminal domain of CXCR4. In contrast to MYD88, the mutation spectrum of CXCR4 was much broader including non-sense mutations at amino acid S338 (10/18) but also frame shifts resulting in loss of regulatory serine residues. One patient had two independent CXCR4 mutations (S338* and S341Pfs*25). The mean bone marrow infiltration by flow cytometry was 14% and 9% in the CXCR4 mutated and unmuted subsets, respectively (p=0.17). Besides molecular genetic aberrations, 25% (17/68) of MYD88 mutated LPL cases carried cytogenetic aberration. The most frequent cytogenetic aberration in the MYD88 positive LPL was the deletion of 6q (10/68; 15%). Other recurrent cytogenetic abnormalities were gains of 4q (n=3), 8q (n=2), and 12q (n=4), as well as loss of 11q (n=4), 13q (n=2) and 17p (n=3). In the MYD88 unmutated group, we did neither identify any CXCR4 mutation nor any del(6q), suggesting different genetic driver events in this LPL subcohort. Importantly, in the MYD88 positive CLL cohort, cytogenetic analysis did not reveal any patient with del(6q). Instead, del(13q)(q14) was the most prevalent cytogenetic aberration (12/17; 71%). Neither 11q deletions nor 17p deletions were detected. All MYD88 positive CLL had a mutated IGHV status (MYD88 unmutated CLL: 453/767; 59%; P<0.001). The TP53, NOTCH1 and SF3B1 mutational landscape did not reveal any differences between the MYD88 mutated and unmutated cohort. Finally, CXCR4 mutations were present in none of 15 analyzed MYD88 mutated CLL cases. Conclusion: Besides multiparameter flow cytometry, MYD88 mutations are the most powerful tool in the diagnosis of LPL. MYD88 mutated LPL are characterized by a high frequency of CXCR4 mutations and del(6q), while MYD88 unmutated LPLs are associated with a different pattern of genetic abnormalities. MYD88 mutated CLL is a distinct CLL subset associated with mutated IGHV status, a high frequency of 13q deletions and low frequencies of 11q and 17p deletions. MYD88 mutated CLL differs from MYD88 mutated LPL with respect to the pattern of MYD88 mutations, cytogenetic aberrations and the absence of CXCR4 mutations. Highly sensitive ASP allows the L265P mutation detection even in LPL cases with very low bone marrow infiltration; whereas highly sensitive NGS assay are best applicable for detection of more heterogenic MYD88 mutations in CLL or CXCR mutations in LPL. Thus, an integrated molecular and cytogenetic approach allows the characterization of disease specific genetic patterns and should be analyzed for its clinical impact. Disclosures Baer: MLL Munich Leukemia Laboratory: Employment. Dicker:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e22129-e22129
Author(s):  
Simona Partlova ◽  
Anna Fialova ◽  
Ludek Sojka ◽  
Lukas Rob ◽  
Jirina Bartunkova ◽  
...  

e22129 Background: Ovarian cancer is diagnosed in more than 190,000 new patients every year and is known to have the highest mortality rate among gynaecologic cancers. The type of immune cells that are present within the tumor microenvironment can play a crucial role in the survival of patients. However, little is known about the dynamics of the tumor-infiltrating immune cells during disease progression. Methods: We studied the immune cells infiltrating the tumor tissue of ovarian cancer patients at different stages of disease. We analysed the patterns of T lymphocytes in fresh tumor tissue as well as blood samples of 44 newly diagnosed ovarian cancer patients by flow cytometry. To evaluate whether regulatory T cells (Tregs) develop in situ or migrate to tumor tissue, we measured a concentration of chemokine CCL22 in tumor cell culture supernatants. We also determined the expression of CCR4 on circulating as well as tumor-infiltrating Tregs by flow cytometry. Results: The early stages of development of ovarian carcinomas were characterized by a strong Th17 immune response, whereas in stage II patients, recruitment of high numbers of Th1 cells was observed. In disseminated tumors (stage III-IV), we detected a dominant population of Helios+ activated regulatory T cells along with high numbers of macrophages and immature myeloid dendritic cells. Tumor-infiltrating Tregs had markedly lower expression of CCR4 than circulating Tregs, and the numbers of tumor-infiltrating Tregs significantly correlated with the levels of CCL22 in ovarian tumor cell culture supernatants, suggesting their recruitment via a CCR4/CCL22 interaction. CCL22 was mainly produced by tumor cells, macrophages and mDCs in the primary ovarian tumors, and its expression markedly increased in response to IFNgamma. Conclusions: Taken together, the specific recruitment of Tregs, probably triggered by inflammatory stimuli, leads to a significant immune suppression in the advanced stages of ovarian cancer.


1992 ◽  
Vol 73 (5) ◽  
pp. 438-444 ◽  
Author(s):  
R. Allman ◽  
A.C. Hann ◽  
R. Manchee ◽  
D. Lloyd

Apmis ◽  
1988 ◽  
Vol 96 (7-12) ◽  
pp. 783-792 ◽  
Author(s):  
B. Kirkhus ◽  
O. P. F. Clausen ◽  
H. Fjordvang ◽  
K. Helander ◽  
O. H. Iversen ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1906-1906
Author(s):  
Bruno Paiva ◽  
Lucía López-Corral ◽  
María-Belén Vidriales ◽  
Luis Ignacio Sánchez Abarca ◽  
Miguel T. Hernandez ◽  
...  

Abstract Abstract 1906 Lenalidomide is an immunomodulatory agent that interacts with different components of the immune system by altering cytokine production, regulating T cells and increasing NK cell cytotoxicity. In multiple myeloma (MM), lenalidomide is approved for use in combination with dexamethasone in patients who have received at least one prior therapy. Recent observations have shown that dexamethasone enhances the anti-myeloma effect of lenalidomide; however, dexamethasone may also antagonize the immunomodulatory properties of lenalidomide. In the present study we evaluated by multiparameter flow cytometry (MFC) peripheral blood (PB) T, NK and dendritic (plasmacytoid, myeloid and monocytic) cells (DC) from high-risk smoldering MM (SMM) patients, defined by the presence of at least 2 of the 3 following criteria at diagnosis: bone marrow plasma cell (BMPC) infiltration ≥10%; and/or high M-component (IgG≥30g/L or IgA≥20g/L or B-J Protein>10g/L); and/or ≥95% myelomatous-PC/BMPC and immune paresis. SMM patients were treated according to the QuiReDex trial (NCT 00480363): an induction phase of nine four-week cycles of lenalidomide plus dexamethasone (LenDex) followed by maintenance with lenalidomide until disease progression. In this ongoing study, immunophenotypic data is available in 53 patients at diagnosis (baseline), 30 after 3 cycles of LenDex and 22 at the end of induction therapy (9th cycle). Here we will focus on the 22 cases with information at the 3 time points. For MFC analysis, PB samples were stained using a four-color direct immunofluorescence technique that allowed the quantification and characterization of T, NK and DC cells, including cell cycle analysis. The percentage of PB T cells in total PB cellularity was stable from baseline vs 3 vs 9 cycles of LenDex (22% vs 21% vs 21%; respectively, NS), with similar results also obtained for T CD4 (12% vs 11% vs 9%; respectively, NS) and T CD8 (8% vs 6% vs 8%; respectively, NS) cells. NK cells were slightly increased after 9 cycles of LenDex for both the CD56dim (4.1%, 3.4% and 6%; respectively; NS) and CD56bright (0.05%, 0.04% and 0.15%; respectively; NS) NK cell compartments. Similarly, the percentage of DC slightly increased along treatment, especially for plasmacytoid DC (0.2% at baseline vs 0.4% after 9 cycles; p=0.09). However, when a more detailed immunophenotypic characterization of T and NK cells was carried out significant differences emerged following LenDex treatment (Figure 1A). Accordingly, after 3 and 9 cycles of LenDex both T CD4 and CD8 cells showed increased expression of activation markers such as CD69 (p=.03), CD25 (p=.02 and NS, respectively), CD54 (p<.001), CD28 (p≤.03) and CD120b (p≤.01), together with increased production of IFNγ (p=.03) and IL-2 (p=.1 and p=.008, respectively). Interestingly, after induction therapy an up-regulation of chemokine receptors related to the Th1 (CCR5; p<.001) but also Th2 (CCR4; p≤.002) immune response was detectable in CD4 and CD8 T cells. T CD4 cells displayed a clear maturation into a central memory phenotype following LenDex treatment (38% at baseline vs 50% and 66% at 3 and 9 cycles, respectively; p<.001) while T CD8 cells displayed an increased effector memory phenotype (44% vs 59% vs 62%; p=.004). Further analysis showed increased expression of HLA-DR (p≤.008), the antibody-dependent cell-mediated cytotoxicity associated receptor CD16 (p≤.03), and the adhesion molecules CD11a (p’.006) and CD11b (p≤.004) both on NK (CD56dim and CD56bright) and T cells. No consistent changes were observed in other NK cell receptors, such as CD94 and the immunoglobulin like receptors CD158a, CD161, NKB1 (3DL1) and NKAT2 (2DL3). Concerning cell cycle analysis, the percentage of cells in S-phase was significantly increased from baseline vs 3 vs 9 cycles of LenDex in T CD4 (0.05% vs 0.15% vs 0.16%; p<.001), CD8 (0.05% vs 0.11% vs 0.23%; p<.001) and NK cells (0.09% vs 0.17% vs 0.20%; p=.001). Finally, an unsupervised cluster analysis of the overall immunophenotypic profile obtained after 9 cycles of LenDex (Figure 1B) was able to discriminate two groups of patients (A and B). Interestingly, within the group with higher activation profile (A) 50% of patients achieved ≥VGPR vs 23% in group B (p=.2). In summary, these preliminary results show that in high risk SMM patients the combination of lenalidomide and dexamethasone modulates PB T and NK cells, with increased activation status that may contribute to disease control. Disclosures: Off Label Use: Lenalidomide is not approved for the treatment of smoldering multiple myeloma. De La Rubia:Janssen-Cilag: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Rosiñol:Celgene: Honoraria. Oriol:Celgene: Consultancy; Janssen-Cilag: Consultancy; Novartis: Consultancy. Hernández:Celgene: Honoraria. de Arriba:Janssen-Cilag: Honoraria; Celgene: Honoraria. Mateos:Celgene: Honoraria. San Miguel:Janssen-Cilag: Honoraria; Celgene: Honoraria, Speakers Bureau.


2012 ◽  
Vol 35 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Kathryn Brosnan ◽  
Andrew Want ◽  
Karen Coopman ◽  
Christopher J. Hewitt

Sign in / Sign up

Export Citation Format

Share Document