The UK and Global Warming Policy

Author(s):  
David Maddison ◽  
David Pearce
Keyword(s):  
1998 ◽  
Vol 38 (11) ◽  
pp. 23-30 ◽  
Author(s):  
F. J. Dennison ◽  
A. Azapagic ◽  
R. Clift ◽  
J. S. Colbourne

This paper presents the preliminary results of a Life Cycle Assessment (LCA) study comparing different wastewater treatment works, operated by Thames Water Utilities Ltd. in the UK. Fifteen works have been studied, representing a range of size and type of treatment works. Five management regimes for centralising sludge treatment and disposal were analyzed in the context of LCA to provide guidance on choosing the best practicable environmental option (BPEO). Consideration of Global warming potential indicates that the four proposed management regimes with centralisation of sludge for treatment and disposal, as adopted by Thames Water Utilities Ltd., is an environmental improvement upon the current practice. One of these options, that of complete centralisation and composting of sludge prior to disposal, exerts the least environmental impact with respect to Global warming potential. This suggests that the adoption of composting at Crawley is environmentally preferable to increasing the digestion facility at this works.


2004 ◽  
Vol 94 (2) ◽  
pp. 123-136 ◽  
Author(s):  
J.W. Chapman ◽  
D.R. Reynolds ◽  
A.D. Smith ◽  
E.T. Smith ◽  
I.P. Woiwod

AbstractDay and night sampling of windborne arthropods at a height of 200 m above ground was undertaken at Cardington, Bedfordshire, UK, during July 1999, 2000 and 2002, using a net supported by a tethered balloon. The results from this study are compared with those from the classic aerial sampling programmes carried out by Hardy, Freeman and colleagues over the UK and North Sea in the 1930s. In the present study, aerial netting was undertaken at night as well as daytime, and so the diel periodicity of migration could be investigated, and comparisons made with the results from Lewis and Taylor’s extensive survey of flight periodicity near ground level. In some taxa with day-time emigration, quite large populations could continue in high-altitude flight after dark, perhaps to a previously underrated extent, and this would greatly increase their potential migratory range. Any trend towards increases in night temperatures, associated with global warming, would facilitate movements of this type in the UK. Observations on the windborne migration of a variety of species, particularly those of economic significance or of radar-detectable size, are briefly discussed.


2006 ◽  
Vol 25 (2) ◽  
pp. 97-112 ◽  
Author(s):  
F. John Gregory ◽  
Howard A. Armstrong ◽  
Ian Boomer ◽  
Rainer Gersonde ◽  
Ian Harding ◽  
...  

Abstract. INTRODUCTION (F. JOHN GREGORY)To commemorate the publication of the 25th Volume of the Journal of Micropalaeontology, the first issue of which came out in 1982, this celebratory review article was commissioned. Officers of each TMS Group (Ostracod, Foraminifera, Palynology, Nannofossil, Microvertebrate and Silicofossil) were requested to reflect over the last 25 years and assess the major advances and innovations in each of their disciplines. It is obvious from the presentations that all Groups report that research has moved on from the basic, but essential descriptive phase, i.e. taxonomy and establishing biostratigraphies, to the utilization of new technologies and application to issues of the day such as climate change and global warming. However, we must not lose sight of the fact that the foundation of micropalaeontology is observation and the building block for all these new and exciting innovations and developments is still good taxonomy. Briefly, the most obvious conclusion that can be drawn from this review is that micropalaeontology as a science is in relatively good health, but we have to ensure that the reported advancements will sustain and progress our discipline. There is one issue that has not really been highlighted in these contributions – we need to make sure that there are enough people being trained in micropalaeontology to maintain development. The last 25 years has seen a dramatic decrease in the number of post-graduate MSc courses in micropalaeontology. For example, in the UK, in the 1980s and early 1990s there were five specific MSc courses to choose . . .


2021 ◽  
Author(s):  
Matthew Charles Perry ◽  
Emilie Vanvyve ◽  
Richard A. Betts ◽  
Erika J. Palin

Abstract. Past and future trends in the frequency of high danger fire weather conditions have been analysed for the UK. An analysis of satellite-derived burned area data from the last 18 years has identified the seasonal cycle with a peak in spring and a secondary peak in summer, the high level of interannual variability, and the lack of a significant trend despite some large events occurring in the last few years. These results were confirmed with a longer series of fire weather indices back to 1979. The Initial Spread Index (ISI) has been used for spring, as this reflects the moisture of fine fuel surface vegetation, whereas conditions conducive to summer wildfires are hot, dry weather reflected in the moisture of deeper organic layers which is encompassed in the Fire Weather Index (FWI). Future projections are assessed using an ensemble of regional climate models from the UK Climate Projections, combining variables to derive the fire weather indices. The results show a large increase in hazardous fire weather conditions in summer. At 2 °C global warming relative to 1850–1900, the frequency of days with “very high” fire danger is projected to double compared to a recent historical period. This frequency increases by 5 times at 4 °C of global warming. Smaller increases are projected for spring, with a 150 % increase for England at 2 °C of global warming and a doubling at 4 °C. A particularly large projected increase for late summer and early autumn suggests a possible extension of the wildfire season, depending on fuel availability. These results suggest that wildfire can be considered an “emergent risk” for the UK, as past events have not had widespread major impacts, but this could change in future. The large increase in risk between the 2 °C and 4 °C levels of global warming highlights the importance of global efforts to keep warming below 2 °C.


2017 ◽  
Vol 17 (17) ◽  
pp. 10651-10674 ◽  
Author(s):  
Dominik Brunner ◽  
Tim Arnold ◽  
Stephan Henne ◽  
Alistair Manning ◽  
Rona L. Thompson ◽  
...  

Abstract. Hydrofluorocarbons (HFCs) are used in a range of industrial applications and have largely replaced previously used gases (CFCs and HCFCs). HFCs are not ozone-depleting but have large global warming potentials and are, therefore, reported to the United Nations Framework Convention on Climate Change (UNFCCC). Here, we use four independent inverse models to estimate European emissions of the two HFCs contributing the most to global warming (HFC-134a and HFC-125) and of SF6 for the year 2011. Using an ensemble of inverse models offers the possibility to better understand systematic uncertainties in inversions. All systems relied on the same measurement time series from Jungfraujoch (Switzerland), Mace Head (Ireland), and Monte Cimone (Italy) and the same a priori estimates of the emissions, but differed in terms of the Lagrangian transport model (FLEXPART, NAME), inversion method (Bayesian, extended Kalman filter), treatment of baseline mole fractions, spatial gridding, and a priori uncertainties. The model systems were compared with respect to the ability to reproduce the measurement time series, the spatial distribution of the posterior emissions, uncertainty reductions, and total emissions estimated for selected countries. All systems were able to reproduce the measurement time series very well, with prior correlations between 0.5 and 0.9 and posterior correlations being higher by 0.05 to 0.1. For HFC-125, all models estimated higher emissions from Spain + Portugal than reported to UNFCCC (median higher by 390 %) though with a large scatter between individual estimates. Estimates for Germany (+140 %) and Ireland (+850 %) were also considerably higher than UNFCCC, whereas the estimates for France and the UK were consistent with the national reports. In contrast to HFC-125, HFC-134a emissions from Spain + Portugal were broadly consistent with UNFCCC, and emissions from Germany were only 30 % higher. The data suggest that the UK over-reports its HFC-134a emissions to UNFCCC, as the model median emission was significantly lower, by 50 %. An overestimation of both HFC-125 and HFC-134a emissions by about a factor of 2 was also found for a group of eastern European countries (Czech Republic + Poland + Slovakia), though with less confidence since the measurement network has a low sensitivity to these countries. Consistent with UNFCCC, the models identified Germany as the highest national emitter of SF6 in Europe, and the model median emission was only 1 % lower than the UNFCCC numbers. In contrast, the model median emissions were 2–3 times higher than UNFCCC numbers for Italy, France, and Spain + Portugal. The country-aggregated emissions from the different models often did not overlap within the range of the analytical uncertainties formally given by the inversion systems, suggesting that parametric and structural uncertainties are often dominant in the overall a posteriori uncertainty. The current European network of three routine monitoring sites for synthetic greenhouse gases has the potential to identify significant shortcomings in nationally reported emissions, but a denser network would be needed for more reliable monitoring of country-wide emissions of these important greenhouse gases across Europe.


1996 ◽  
Vol 7 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Ragnar E. Löfstedt

This paper evaluates the Department of the Environment's Helping the Earth Begins at Home Campaign that was carried out in the early 1990s from a global warming perception perspective. The study is based on both qualitative and quantitative research in the UK including random telephone surveys and interviews with policy makers. The study shows that the campaign largely failed for two reasons: a) the majority of the respondents did not make a link between their own energy consumption and global warming and b) the respondent's still confused global warming with the ozone hole.


1991 ◽  
Vol 118 (2) ◽  
pp. 261-271 ◽  
Author(s):  
R. H. COLLIER ◽  
S. FINCH ◽  
K. PHELPS ◽  
A. R. THOMPSON

Author(s):  
Nicole M Krause ◽  
Dominique Brossard ◽  
Dietram A Scheufele ◽  
Michael A Xenos ◽  
Keith Franke

Abstract Events such as the 2017 “March for Science” have brought greater attention to public attitudes toward science and scientists. Our analyses of recent poll data show that Americans’ confidence in scientists has been high for roughly 40 years (relative to other institutions), and that it is high even for controversial topics such as global warming and nuclear energy. International comparisons show broad similarities with individuals in Germany and the UK, including that trust in scientists can fluctuate depending on who employs them and what topic is under discussion. Finally, more granular analyses in the United States reveal large divides in trust based on geographic location and religious identification (i.e., rural residents exhibit comparatively low trust and the nonreligious comparatively high trust), while the gap between political partisans has been relatively small but has spiked in recent years.


Author(s):  
Richard J. Dawson ◽  
David Thompson ◽  
Daniel Johns ◽  
Ruth Wood ◽  
Geoff Darch ◽  
...  

Extreme weather causes substantial adverse socio-economic impacts by damaging and disrupting the infrastructure services that underpin modern society. Globally, $2.5tn a year is spent on infrastructure which is typically designed to last decades, over which period projected changes in the climate will modify infrastructure performance. A systems approach has been developed to assess risks across all infrastructure sectors to guide national policy making and adaptation investment. The method analyses diverse evidence of climate risks and adaptation actions, to assess the urgency and extent of adaptation required. Application to the UK shows that despite recent adaptation efforts, risks to infrastructure outweigh opportunities. Flooding is the greatest risk to all infrastructure sectors: even if the Paris Agreement to limit global warming to 2°C is achieved, the number of users reliant on electricity infrastructure at risk of flooding would double, while a 4°C rise could triple UK flood damage. Other risks are significant, for example 5% and 20% of river catchments would be unable to meet water demand with 2°C and 4°C global warming respectively. Increased interdependence between infrastructure systems, especially from energy and information and communication technology (ICT), are amplifying risks, but adaptation action is limited by lack of clear responsibilities. A programme to build national capability is urgently required to improve infrastructure risk assessment. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’.


Sign in / Sign up

Export Citation Format

Share Document