Modeling the Oxidation and Corrosion Behavior of 3D Carbon Fiber Reinforced SiC Matrix Composites from 400 to 1500 Degrees C

Author(s):  
Qingfeng Zeng ◽  
Laifei Cheng ◽  
Litong Zhang ◽  
Xingang Luan ◽  
Xiaowei Yin ◽  
...  
2020 ◽  
Vol 40 (5) ◽  
pp. 415-420 ◽  
Author(s):  
Yasin Altin ◽  
Hazal Yilmaz ◽  
Omer Faruk Unsal ◽  
Ayse Celik Bedeloglu

AbstractThe interfacial interaction between the fiber and matrix is the most important factor which influences the performance of the carbon fiber-epoxy composites. In this study, the graphitic surface of the carbon fibers was modified with graphene oxide nanomaterials by using a spray coating technique which is an easy, cheap, and quick method. The carbon fiber-reinforced epoxy matrix composites were prepared by hand layup technique using neat carbon fibers and 0.5, 1 and 2% by weight graphene oxide (GO) modified carbon fibers. As a result of SEM analysis, it was observed that GO particles were homogeneously coated on the surface of the carbon fibers. Furthermore, Young's modulus increased from 35.14 to 43.40 GPa, tensile strength increased from 436 to 672 MPa, and the elongation at break was maintained around 2% even in only 2% GO addition.


Author(s):  
Andi Udayakumar ◽  
M. Rizvan Basha ◽  
Sarabjit Singh ◽  
Sweety Kumari ◽  
V. V. Bhanu Prasad

2011 ◽  
Vol 686 ◽  
pp. 758-764 ◽  
Author(s):  
Xiao Ming Sui ◽  
Xi Liang Xu ◽  
Xiao Meng Zheng ◽  
Guang Zhi Xu ◽  
Qiang Wang

Driven by the increasing requirements from aircraft producers, aluminium alloy matrix composites with carbon fiber reinforcement have been largely used in the modern industry. The method of traditional preparation of carbon fiber reinforced aluminum matrix composites is not only high cost and complex to produce but also difficult to apply in the civilian. The present paper focuses on exploratory study on the preparation of carbon-fiber- reinforced aluminum composites, the intensifying material is continuous long carbon fiber. In order to avoid any interfacial reactions in the carbon fiber reinforced composites, the carbon fibers were coated with copper. We made The tensile samples were made by using the mould, the tensile properties determined, the strengthening mechanism studied, and the carbon fiber in the matrix observed with the microscope.


2016 ◽  
Vol 68 (2) ◽  
pp. 212-219 ◽  
Author(s):  
Juan Wu ◽  
Ziming Kou ◽  
Gongjun Cui

Purpose – The purpose of this paper is to prepare carbon fiber-reinforced polyimide matrix composites and to investigate the single role of carbon fiber in polyimide composites on tribological performance under distilled water condition. Design/methodology/approach – Three carbon fiber-reinforced polyimide matrix composites were fabricated by using a hot press molding technique. The tribological behaviors of carbon fiber-reinforced polyimide matrix composites sliding against steel ball were evaluated with a ball-on-disk tribotester under distilled water condition. Meanwhile, the effect of different length of carbon fiber on the wear resistance of polyimide matrix composites was investigated during the sliding process. Findings – The friction coefficients and specific wear rates of polyimide composites containing 100 μm carbon fibers were lower than those of other specimens. The wear mechanism of carbon fiber-reinforced composites was delamination under distilled water condition. The interfacial combination between the carbon fiber and matrix became worse with the increase of length of carbon fiber. Originality/value – This paper reported the effect of the different length of carbon fiber on polyimide matrix composites to prepare mechanical parts in mining industrial fields.


Sign in / Sign up

Export Citation Format

Share Document