Evolution of the Indo-Pacific Warm Pool and Hadley-Walker Circulation Since the Last Deglaciation

Author(s):  
Michael K. Gagan ◽  
Lonnie G. Thompson
2014 ◽  
Vol 10 (4) ◽  
pp. 3397-3419
Author(s):  
L. Lo ◽  
C.-C. Shen ◽  
K.-Y. Wei ◽  
G. S. Burr ◽  
H.-S. Mii ◽  
...  

Abstract. To develop an in-depth understanding of the natural dynamics of the Indo-Pacific Warm Pool (IPWP) during the last deglaciation, stacked North- (N-) and South-IPWP (S-IPWP) thermal and hydrological records over the past 23–10.5 thousand years (ka) were built using planktonic foraminiferal geochemical data from a new core, MD05-2925 (9.3° S, 151.5° E, water depth 1661 m) in the Solomon Sea and eleven previous sites. Ice-volume corrected seawater δ18O (δ18OSW-IVC) stacks show that S-IPWP δ18OSW-IVC values are indistinguishable from their northern counterpart through glacial time. The N-IPWP SST stacked record features an increasing trend of 0.5 °C ka−1 since 18 ka. Its S-IPWP counterpart shows an earlier onset of temperature increase at 19 ka and a strong teleconnection to high-latitude climate in the Southern Hemisphere. Meridional SST gradients between N- and S-IPWP were 1.5 °C during the Bølling/Allerød period and < 0.5 °C during both Heinrich event 1 and the Younger Dryas due to a warmer S-IPWP. A warm S-IPWP during the cold events snapshots may possibly weaken the southern hemispheric convection branch of the Hadley Cell and reduce precipitation in the Asian Monsoon region.


2019 ◽  
Vol 34 (7) ◽  
pp. 1107-1123 ◽  
Author(s):  
Paola Moffa‐Sanchez ◽  
Yair Rosenthal ◽  
Tali L. Babila ◽  
Mahyar Mohtadi ◽  
Xu Zhang

2014 ◽  
Vol 10 (6) ◽  
pp. 2253-2261 ◽  
Author(s):  
L. Lo ◽  
C.-C. Shen ◽  
K.-Y. Wei ◽  
G. S. Burr ◽  
H.-S. Mii ◽  
...  

Abstract. To develop an in-depth understanding of the natural dynamics of the Indo-Pacific Warm Pool (IPWP) during the last deglaciation, stacked north- (N-) and south-IPWP (S-IPWP) thermal and hydrological records over the past 23–10.5 ka were built using planktonic foraminiferal geochemistry data from a new core, MD05-2925 (9.3° S, 151.5° E water depth 1661 m) in the Solomon Sea and eleven previous sites. Ice-volume-corrected seawater δ18O (δ18OSW-IVC) stacks show that S-IPWP δ18OSW-IVC values are indistinguishable from their northern counterparts through glacial time. The N-IPWP SST (sea surface temperature) stacked record features an increasing trend of 0.5 °C ka−1 since 18 ka. Its S-IPWP counterpart shows an earlier onset of temperature increase at 19 ka and a strong teleconnection to high-latitude climate in the Southern Hemisphere. Meridional SST gradients between the N- and S-IPWP were 1–1.5 °C during the Bølling/Allerød period and 1 °C during both Heinrich event 1 and the Younger Dryas, due to a warmer S-IPWP. A warm S-IPWP during the cold events could weaken the southern hemispheric branch of the Hadley cell and reduce precipitation in the Asian monsoon region.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1030
Author(s):  
Hye-Ryeom Kim ◽  
Kyung-Ja Ha ◽  
Suyeon Moon ◽  
Hyoeun Oh ◽  
Sahil Sharma

The Indo-Pacific warm pool (IPWP) is enclosed by a 28 °C isotherm and plays a vital role in controlling atmospheric circulations. However, the effects of changes in regional warm pool sea surface temperatures (SSTs) remain unexplored. We divided the IPWP into the Indian and Pacific sectors and distinguished their responses to natural variability and global warming. Furthermore, we examined the impacts of the interannual variability (IAV) in warm pool SST on the tropical Hadley, Walker, and monsoon circulations. The Hadley circulation was affected by warm pool SST warming, i.e., warmer SSTs over the warm pool strengthened the upward branch of Hadley circulation, whereas the downward branch was respectively weakened and strengthened in the Northern and Southern Hemispheres. Walker circulation was strengthened (weakened) in the warming (natural) mode. Consequently, the Walker circulation is weakened since the natural variability of warm pool SST plays a more dominant role rather than the warming trend of SSTs over the warm pool. Furthermore, our analysis displays that warm pool warming has little impact on the monsoon circulation. Our findings highlight the different roles of the IAV of warm pool regions in each tropical circulation as part of the warming trend and natural variability.


2018 ◽  
Vol 4 (12) ◽  
pp. eaat9658 ◽  
Author(s):  
Pedro N. DiNezio ◽  
Jessica E. Tierney ◽  
Bette L. Otto-Bliesner ◽  
Axel Timmermann ◽  
Tripti Bhattacharya ◽  
...  

The mechanisms driving glacial-interglacial changes in the climate of the Indo-Pacific warm pool are poorly understood. Here, we address this question by combining paleoclimate proxies with model simulations of the Last Glacial Maximum climate. We find evidence of two mechanisms explaining key patterns of ocean cooling and rainfall change interpreted from proxy data. Exposure of the Sahul shelf excites a positive ocean-atmosphere feedback involving a stronger surface temperature gradient along the equatorial Indian Ocean and a weaker Walker circulation—a response explaining the drier/wetter dipole across the basin. Northern Hemisphere cooling by ice sheet albedo drives a monsoonal retreat across Africa and the Arabian Peninsula—a response that triggers a weakening of the Indian monsoon via cooling of the Arabian Sea and associated reductions in moisture supply. These results demonstrate the importance of air-sea interactions in the Indian Ocean, amplifying externally forced climate changes over a large part of the tropics.


2022 ◽  
Author(s):  
Marco Yseki ◽  
Bruno Turcq ◽  
Sandrine Caquineau ◽  
Renato Salvatteci ◽  
José Solis ◽  
...  

Abstract. Reconstructing precipitation and wind from the geological record could help to understand the potential changes in precipitation and wind dynamics in response to climate change in Peru. The last deglaciation offers natural experimental conditions to test precipitation and wind dynamics response to high latitude forcing. While considerable research has been done to reconstruct precipitation variability during the last deglaciation in the Atlantic sector of South America, the Pacific sector of South America has received little attention. This work aims to fill this gap by reconstructing types of terrigenous transport to the central-southern Peruvian margin (12° S and 14º S) during the last deglaciation (18–13 kyr BP). For this purpose, we used grain-size distribution in sediments of marine core M77/2-005-3 (Callao, 12º S) and G14 (Pisco, 14º S). We analyzed end-members (EM) to identify grain-size components and reconstruct potential sources and transport processes of terrigenous material across time. We identified four end-members for both Callao and Pisco sediments. In Callao, we propose that changes in EM4 (101 μm) and EM2 (58 μm) contribution mainly reflect hydrodynamic energy and diffuse sources, respectively, while EM3 (77 um) and EM1 (11 μm) variations reflect changes in aeolian and fluvial inputs, respectively. In Pisco, changes in the contribution of EM1 (10 μm) reflect changes in river inputs while EM2 (52 μm), EM3 (75 μm) and EM4 (94 μm) reflect an aeolian origin linked to surface winds. At millennial-scale, our record shows an increase of the fluvial inputs during the last part of Heinrich Stadial 1 (~ 16–14.7 kyr BP) at both locations. This increase was linked to higher precipitation in Andes related to a reduction of the Atlantic Meridional Overturning Circulation and meltwater discharge in North Atlantic. In contrast, during Bølling-Allerød (~ 14.7–13 kyr BP), there was an aeolian input increase, associated with stronger winds and lower precipitation that indicate an expansion of the South Pacific Subtropical High. These conditions would correspond to a northern displacement of the Intertropical Convergence Zone-South Subtropical High system associated with a stronger Walker circulation. Our results suggest that variations in river discharge and changes in surface wind intensity in the western margin of South America during the last deglaciation were sensitive to Atlantic Meridional Overturning Circulation variations and Walker circulation on millennial timescales. In the context of global warming, large-scale precipitation and fluvial discharge increases in the Andes related to Atlantic Meridional Overturning Circulation decline and southward displacement of the Intertropical Convergence Zone should be considered.


2020 ◽  
Vol 6 (42) ◽  
pp. eabc0402
Author(s):  
Haowen Dang ◽  
Zhimin Jian ◽  
Yue Wang ◽  
Mahyar Mohtadi ◽  
Yair Rosenthal ◽  
...  

Dynamics driving the El Niño–Southern Oscillation (ENSO) over longer-than-interannual time scales are poorly understood. Here, we compile thermocline temperature records of the Indo-Pacific warm pool over the past 25,000 years, which reveal a major warming in the Early Holocene and a secondary warming in the Middle Holocene. We suggest that the first thermocline warming corresponds to heat transport of southern Pacific shallow overturning circulation driven by June (austral winter) insolation maximum. The second thermocline warming follows equatorial September insolation maximum, which may have caused a steeper west-east upper-ocean thermal gradient and an intensified Walker circulation in the equatorial Pacific. We propose that the warm pool thermocline warming ultimately reduced the interannual ENSO activity in the Early to Middle Holocene. Thus, a substantially increased oceanic heat content of the warm pool, acting as a negative feedback for ENSO in the past, may play its role in the ongoing global warming.


Sign in / Sign up

Export Citation Format

Share Document