Integrity of Piezo-Composite Beams Under High Cyclic Electro-Mechanical Loads - Experimental Results

Author(s):  
Lucy Edery-Azulay ◽  
Haim Abramovich
2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Boxin Wang ◽  
Ruichang Fang ◽  
Qing Wang

Given the excellent crack resistance performance of steel fiber-reinforced self-stressing concrete (SFRSSC), the bending performance of some composite beams with SFRSSC laminated layers was studied. The experiment conducted in this study comprised a single-span composite beam test (including 3 test beams) and a two-span continuous composite beam test (including 2 test beams). All the test beams were T-shaped. The cracking load, yielding load, and ultimate load of all the test beams were recorded and comparatively analyzed. Experimental results showed that the cracking load of the test beam with an SFRSSC laminated layer is significantly increased. Mechanical analysis and numerical simulation of the test beams were conducted, and the obtained results agreed well with the experimental results. The composite beams under different working conditions were also numerically simulated. Through the simulation, reasonable ranges of precompressive stress and length of the SFRSSC laminated layer at intermediate support of continuous composite beam were obtained.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Bashar S. Mohammed ◽  
M. F. Nuruddin ◽  
Muhammad Aswin ◽  
Nursyuhada Mahamood ◽  
Hashem Al-Mattarneh

Eight large-scale reinforced self-compacted engineered cementitious composite (R-SC-ECC) beams with different steel reinforcement ratios have been designed, prepared, cast, cured, and tested to failure at the age of 28 days. The experimental results have been compared with theoretical values predicted using EC2, RILEM, and VecTor2 models. Results show that failure modes in flexure and shear of R-SC-ECC beams are comparable to that of normal reinforced concrete beam. Nevertheless, contrary to VecTor2, models of EC2 and RILEM are not suitable for predicting reasonable ultimate moments for the beams, while results using VecTor2 model have successfully predicted the failure modes and load-deflection curves for all R-SC-ECC beams. It has been concluded that R-SC-ECC fall in the category of ductility class medium to high which gives advantages of using R-SC-ECC beams in regions susceptible to seismic activities.


Author(s):  
Liling Tang ◽  
Yuxi Ding ◽  
Lei Liu ◽  
Junshi Zhang

Abstract In this article, we propose a method to realize the pure shear deformation mode of dielectric elastomer (DE) membranes by tuning two in-plane prestresses. With utilization of carbon grease electrodes, VHB 4905 membranes are prestretched and attached into a retractable device, forming a pure-shear deformation controller. Experimental results demonstrate that, accurate pure shear deformation mode of DEs can be realized by tuning the mechanical loads in the two directions of the deformation controller. Furthermore, large deformation in the direction of free state can be achieved without electromechanical instabilities. The designed deformation controller accurately realizes the specific pure shear deformation mode of DEs and can be utilized to help design the practical soft actuators.


Author(s):  
E. Sevkat ◽  
B. M. Liaw ◽  
F. Delale ◽  
B. B. Raju

A combined experimental and 3-D dynamic nonlinear finite element approach was adopted to study composite beams subject to drop-weight or ballistic impact. The composite specimens, made of S2 glass-reinforced toughened epoxy (44% fiber volume fraction, cured at 350°F), had 24 layers (approximately 6.35 mm) with various stacking sequences. They were damaged by impacts using either an Instron-Dynatup 8520 instrumented drop-weight impact tester (low-velocity impact) or an in-house high-speed gas gun (ballistic impact). For both types of tests, the time-histories of dynamic strains induced during impact were recorded using strain gages mounted on the front and back of the composite beam specimen. For drop-weight impact tests, the time history of impact force was also recorded; whereas for ballistic impact tests, only the impact velocity was calculated from the recorded change in voltage outputs, which resulted from the traversing of the impactor through two optical paths formed by two sets of diode laser-amplified photo diode pairs. The commercially available 3-D dynamic nonlinear finite element software, LS-DYNA, incorporated with a proposed nonlinear anisotropic damage model, was then used to simulate the experimental results. Good agreement between experimental and FEM results can be seen from comparisons of dynamic strain and impact force histories and damage patterns. Once the proposed nonlinear anisotropic damage model was verified by experimental results, further finite element simulations were conducted to predict the ballistic limit velocity (V50) for penetration prevention.


Author(s):  
Matheus Erpen Benincá ◽  
Rebeca Jéssica Schmitz ◽  
Inácio Benvegnu Morsch

abstract: The use of steel-concrete composite beams allows the best properties of these materials to be explored, resulting in more economical solutions. Many researchers have studied the behavior of composite beams from different strategies of numerical modeling, and some of these are presented in this article. In this context, the present work proposes the construction of a tridimensional numerical model using ANSYS software, version 19.2, with current-technology elements and compatible material models. For the simulation of concrete behavior, two models have been used: the first, denominated DP-CONCRETE, is a native ANSYS model, available in the more recent versions of this software; and the second, denominated USERMAT, is a customizable model that was developed based on Ottosen criterion. The results obtained with these models for the analyzed beams presented a good correlation with the experimental results and with numerical results from previous works.


Sign in / Sign up

Export Citation Format

Share Document