Weed Management in Rainfed Agricultural Systems

2011 ◽  
pp. 215-232
Author(s):  
Colin Birch ◽  
Ian Cooper ◽  
Gurjeet Gill ◽  
Stephen Adkins ◽  
Madan Gupta
Weed Science ◽  
1998 ◽  
Vol 46 (2) ◽  
pp. 214-216 ◽  
Author(s):  
Robert S. Gallagher ◽  
John Cardina

Weed seeds can require an exposure to light for induction of germination. Conducting tillage operations at night and thus preventing the photoinduction of germination has been proposed as a means to reduce weed emergence in agricultural systems. This research was conducted to evaluate night tillage as a weed management option and to determine which tillage operations have the greatest effect on light-mediated recruitment. Weed emergence was evaluated after conducting factorial combinations of day and night moldboard plowing and disking in the springtime from 1992 through 1995. The light environment during disking generally had a slightly greater effect on emergence than the light environment during plowing. Emergence of pigweed species and giant foxtail was, at most, 30 to 55% higher following day vs. night disking. Emergence of other weeds was not affected by the light environment during tillage. We conclude that night tillage may not be a viable approach to weed management due to insufficient reductions in weed emergence associated with night tillage and the high degree of variability in the recruitment response to light conditions during tillage.


2016 ◽  
Vol 46 (11) ◽  
pp. 1909-1916 ◽  
Author(s):  
Giliardi Dalazen ◽  
Aldo Merotto Júnior

ABSTRACT: Genetic use restriction technologies (GURTs) were developed to preserve the intellectual property of genetically modified crops (GM) and ensure the return of investments made by industry to obtain technology delivered through seeds. The aims of this review are to discuss the GURTs and analyze their possible applications in integrated management of agricultural pests. There are two classes of GURTs: T-GURTs (trait-based GURTs), wherein the generated seed are viable, but the next generation does not express the trait of agronomic interest, and V-GURT (variety-based GURTs), in which plants produce non viable seeds. However, beyond the seed protection purpose, the GURTs could have also other application to solve agronomic problems. One of the most important is the use of GURTs as a tool to restrict gene flow of GM traits to relative weeds. In addition, it is proposed the use of this technology in integrated weed management by preventing the GMs seed germination, which produces volunteer plants that compete with the crop of interest. Also, these volunteer plants may serve as alternative hosts for insects and pathogens in between crop seasons. The GURTs could contribute to the control of undesirable agents in agricultural systems, reducing the use of pesticides and increasing crop yields.


EDIS ◽  
2013 ◽  
Vol 2013 (3) ◽  
Author(s):  
James J. Ferguson ◽  
Bala Rathinasabapathi ◽  
Carlene A. Chase

Allelopathy refers to the beneficial or harmful effects of one plant on another plant, both crop and weed species, from the release of biochemicals, known as allelochemicals, from plant parts by leaching, root exudation, volatilization, residue decomposition, and other processes in both natural and agricultural systems. This 5-page fact sheet introduces the concept of allelopathy and mentions potential applications as an alternative weed management strategy. Written by James J. Ferguson, Bala Rathinasabapathi, and Carlene A. Chase, and published by the UF Department of Horticultural Sciences, March 2013. http://edis.ifas.ufl.edu/hs186


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 118
Author(s):  
António Monteiro ◽  
Sérgio Santos

In the last few decades, the increase in the world’s population has created a need to produce more food, generating, consequently, greater pressure on agricultural production. In addition, problems related to climate change, water scarcity or decreasing amounts of arable land have serious implications for farming sustainability. Weeds can affect food production in agricultural systems, decreasing the product quality and productivity due to the competition for natural resources. On the other hand, weeds can also be considered to be valuable indicators of biodiversity because of their role in providing ecosystem services. In this sense, there is a need to carry out an effective and sustainable weed management process, integrating the various control methods (i.e., cultural, mechanical and chemical) in a harmonious way, without harming the entire agrarian ecosystem. Thus, intensive mechanization and herbicide use should be avoided. Herbicide resistance in some weed biotypes is a major concern today and must be tackled. On the other hand, the recent development of weed control technologies can promote higher levels of food production, lower the amount of inputs needed and reduce environmental damage, invariably bringing us closer to more sustainable agricultural systems. In this paper, we review the most common conventional and non-conventional weed control strategies from a sustainability perspective, highlighting the application of the precision and automated weed control technologies associated with precision weed management (PWM).


1996 ◽  
Vol 11 (2-3) ◽  
pp. 127-131
Author(s):  
Douglas L. Young

AbstractAn evaluation of agricultural systems often involves multidisciplinary teams that include crop scientists, animal scientists, soil scientists, pest control specialists, agricultural economists, and others. Agricultural economists can improve the technical quality and comprehe nsiveness of agricultural systems research in six major areas: budgeting and investment analyses; whole-farm and institutional factors; risk considerations; aggregate effects on crop and livestock prices; society-wide welfare effects of technical or policy changes; and economic values of environmental and other nonmarket effects. Economic analysis has been part of several successful multidisciplinary research efforts in the United States Pacific Northwest. These have covered soil conservation, integrated pest management, sustainable agriculture, crop rotation choice, and beef ranch management. As an example of institutional influences on economic outcomes, one study showed that the structure and selectivity of United States commodity programs have favored conventional over low-input rotations. Regarding risk management, an appropriate “package system” including conservation tillage, a diversified crop rotation, and adequate chemical weed management was shown both to sustain profitability and to reduce income fluctuations. Properly designed economic analysis can make similar contributions to identifying successful dryl and agricultural technologies throughout the world.


Sign in / Sign up

Export Citation Format

Share Document