Building a Very Low Frequency Solar Flare Monitor

Author(s):  
Jeff Lashley
2020 ◽  
Vol 240 ◽  
pp. 07004
Author(s):  
Arpit Gupta ◽  
Seow Kit Hint ◽  
Cao Shangyu ◽  
Hoe Teck Tan

Sudden ionospheric disturbances are transient changes in the ionosphere caused by enhancement in X-ray and EUV fluxes during solar flare events. The Solar Storm Radio Telescope is developed to detect Very Low Frequency (VLF) signals with frequency between 3-30 kHz transmitted from various VLF stations around the Globe. We will also be investigating different methods to reduce the background noise in the data collection. This will help to ensure an accurate hit when there is a sudden ionospheric disturbance.


2013 ◽  
Vol 109 (1/2) ◽  
Author(s):  
Etienne J. Koen ◽  
Andrew B. Collier

Measurements of the amplitude and phase of very low frequency transmitter signals were used to evaluate the effects on the ionosphere of a moderate intensity solar flare that occurred on 13 December 2007. These measurements were compared to modelled results from the Long Wave Propagation Capability code. The ionospheric effects were found to be delayed by ~1 min with respect to the 0.1–0.8 nm solar X-ray flux.


1963 ◽  
Vol 68 (19) ◽  
pp. 5421-5435 ◽  
Author(s):  
C. J. Chilton ◽  
F. K. Steele ◽  
E. B. Norton

2009 ◽  
Vol 23 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Suzannah K. Helps ◽  
Samantha J. Broyd ◽  
Christopher J. James ◽  
Anke Karl ◽  
Edmund J. S. Sonuga-Barke

Background: The default mode interference hypothesis ( Sonuga-Barke & Castellanos, 2007 ) predicts (1) the attenuation of very low frequency oscillations (VLFO; e.g., .05 Hz) in brain activity within the default mode network during the transition from rest to task, and (2) that failures to attenuate in this way will lead to an increased likelihood of periodic attention lapses that are synchronized to the VLFO pattern. Here, we tested these predictions using DC-EEG recordings within and outside of a previously identified network of electrode locations hypothesized to reflect DMN activity (i.e., S3 network; Helps et al., 2008 ). Method: 24 young adults (mean age 22.3 years; 8 male), sampled to include a wide range of ADHD symptoms, took part in a study of rest to task transitions. Two conditions were compared: 5 min of rest (eyes open) and a 10-min simple 2-choice RT task with a relatively high sampling rate (ISI 1 s). DC-EEG was recorded during both conditions, and the low-frequency spectrum was decomposed and measures of the power within specific bands extracted. Results: Shift from rest to task led to an attenuation of VLFO activity within the S3 network which was inversely associated with ADHD symptoms. RT during task also showed a VLFO signature. During task there was a small but significant degree of synchronization between EEG and RT in the VLFO band. Attenuators showed a lower degree of synchrony than nonattenuators. Discussion: The results provide some initial EEG-based support for the default mode interference hypothesis and suggest that failure to attenuate VLFO in the S3 network is associated with higher synchrony between low-frequency brain activity and RT fluctuations during a simple RT task. Although significant, the effects were small and future research should employ tasks with a higher sampling rate to increase the possibility of extracting robust and stable signals.


1995 ◽  
Vol 115 (10) ◽  
pp. 1174-1178
Author(s):  
Takahiro Ishida ◽  
Masayuki Nagao ◽  
Masamitsu Kosaki

1988 ◽  
Author(s):  
Wayne I. Klemetti ◽  
Paul A. Kossey ◽  
John E. Rasmussen ◽  
Maria Sueli Da Silveira Macedo Moura

Sign in / Sign up

Export Citation Format

Share Document