Desiccant Dehumidification Integrated with Hydronic Radiant Cooling System

2013 ◽  
pp. 217-247 ◽  
Author(s):  
A. Z. Zainal ◽  
A. S. Binghooth
Author(s):  
Arup Chandra Saha ◽  
Vikas Verma ◽  
Rahul Tarodiya ◽  
M.R. Mahboob ◽  
Rajesh Kumar

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7825
Author(s):  
Pradeep Shakya ◽  
Gimson Ng ◽  
Xiaoli Zhou ◽  
Yew Wah Wong ◽  
Swapnil Dubey ◽  
...  

A hybrid cooling system which combines natural ventilation with a radiant cooling system for a hot and humid climate was studied. Indirect evaporative cooling was used to produce chilled water at temperatures slightly higher than the dew point. With this hybrid system, the condensation issue on the panel surface of a chilled ceiling was overcome. A computational fluid dynamics (CFD) model was employed to determine the cooling load and the parameters required for thermal comfort analysis for this hybrid system in an office-sized, well-insulated test room. Upon closer investigation, it was found that the thermal comfort by the hybrid system was acceptable only in limited outdoor conditions. Therefore, the hybrid system with a secondary fresh air supply system was suggested. Furthermore, the energy consumptions of conventional all-air, radiant cooling, and hybrid systems including the secondary air supply system were compared under similar thermal comfort conditions. The predicted results indicated that the hybrid system saves up to 77% and 61% of primary energy when compared with all-air and radiant cooling systems, respectively, while maintaining similar thermal comfort.


2020 ◽  
Vol 164 ◽  
pp. 02006
Author(s):  
Elena Malyavina ◽  
Alexander Lomakin

A well-known statement of the theory of thermal stability asserts that when a harmonically time-changing convective heat flux enters a room, it can only be assimilated by a radiant cooling system if the assimilating flow exceeds the perturbing convective flow in magnitude. However, in engineering practice, there are no purely radiant systems. Therefore, the article has considered a ceiling cooling panel as a room cooling system, the heat flow from which is of a radiant-convective nature. The convective heat access to the room is constant during the working hours from 9 a.m. to 6 p.m. The task of determining the load on the cooling system has been performed by calculations.. Herewith, the rooms of different internal thermal stability have been considered. According to the calculation results, it has been found that, since the amount of the heat gains remains constant for a long period of time, the process of the room cooling comes almost to a stationary state and does not depend on the room thermal stability with assimilated heat gains, the value of which in different options varied from 100 W to 1000 W. It has been found, that when the temperature difference between the panel surface and the surrounding surfaces increases, the proportion of the convective assimilating flow becomes bigger.


2013 ◽  
Vol 300-301 ◽  
pp. 1048-1053 ◽  
Author(s):  
Yong Hong Wang

In this paper, the test methods of radiation laboratory and data analysis in detail were introduced. The impact of the capillary system with different parameters changing, such as water temperature or water flow the capillary cooling capacity changes, and the capillary cooling system when the initial radiation response time were specificially studied. Under different parameters while cooling capillary volume changes associated with the indoor temperature can be seen under certain conditions, the capillary cooling capacity and room temperature has a linear relationship.


1999 ◽  
Vol 30 (2) ◽  
pp. 177-183 ◽  
Author(s):  
N. Matsuki ◽  
Y. Nakano ◽  
T. Miyanaga ◽  
N. Yokoo ◽  
T. Oka

Sign in / Sign up

Export Citation Format

Share Document