Distensibility of the Pulmonary Capillaries

1990 ◽  
pp. 117-122
Author(s):  
J. S. Lee ◽  
L. P. Lee
Author(s):  
R. G. Gerrity ◽  
M. Richardson

Dogs were injected intravenously with E_. coli endotoxin (2 mg/kg), and lung samples were taken at 15 min., 1 hr. and 24 hrs. At 15 min., occlusion of pulmonary capillaries by degranulating platelets and polymorphonuclear leukocytes (PML) was evident (Fig. 1). Capillary endothelium was intact but endothelial damage in small arteries and arterioles, accompanied by intraalveolar hemorrhage, was frequent (Fig. 2). Sloughing of the surfactant layer from alveolar epithelium was evident (Fig. 1). At 1 hr., platelet-PML plugs were no longer seen in capillaries, the endothelium of which was often vacuolated (Fig. 3). Interstitial edema and destruction of alveolar epithelium were seen, and type II cells had discharged their granules into the alveoli (Fig. 4). At 24 hr. phagocytic PML's were frequent in peripheral alveoli, while centrally, alveoli and vessels were packed with fibrin thrombi and PML's (Fig. 5). In similar dogs rendered thrombocytopenic with anti-platelet serum, lung ultrastructure was similar to that of controls, although PML's were more frequently seen in capillaries in the former (Fig. 6).


2019 ◽  
pp. 673-683
Author(s):  
Richard E. Moon ◽  

Gas can enter arteries (arterial gas embolism, AGE) due to alveolar-capillary disruption (caused by pulmonary over-pressurization, e.g. breath-hold ascent by divers) or veins (venous gas embolism, VGE) as a result of tissue bubble formation due to decompression (diving, altitude exposure) or during certain surgical procedures where capillary hydrostatic pressure at the incision site is subatmospheric. Both AGE and VGE can be caused by iatrogenic gas injection. AGE usually produces stroke-like manifestations, such as impaired consciousness, confusion, seizures and focal neurological deficits. Small amounts of VGE are often tolerated due to filtration by pulmonary capillaries; however VGE can cause pulmonary edema, cardiac “vapor lock” and AGE due to transpulmonary passage or right-to-left shunt through a patient foramen ovale. Intravascular gas can cause arterial obstruction or endothelial damage and secondary vasospasm and capillary leak. Vascular gas is frequently not visible with radiographic imaging, which should not be used to exclude the diagnosis of AGE. Isolated VGE usually requires no treatment; AGE treatment is similar to decompression sickness (DCS), with first aid oxygen then hyperbaric oxygen. Although cerebral AGE (CAGE) often causes intracranial hypertension, animal studies have failed to demonstrate a benefit of induced hypocapnia. An evidence-based review of adjunctive therapies is presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jizhi Wu ◽  
Guangqi Zhang ◽  
Hui Xiong ◽  
Yuguang Zhang ◽  
Gang Ding ◽  
...  

AbstractOxygen therapy has been widely used in clinical practice, especially in anesthesia and emergency medicine. However, the risks of hyperoxemia caused by excessive O2 supply have not been sufficiently appreciated. Because nasal inhalation is mostly used for oxygen therapy, the pulmonary capillaries are often the first to be damaged by hyperoxia, causing many serious consequences. Nevertheless, the molecular mechanism by which hyperoxia injures pulmonary capillary endothelial cells (LMECs) has not been fully elucidated. Therefore, we systematically investigated these issues using next-generation sequencing and functional research techniques by focusing on non-coding RNAs. Our results showed that hyperoxia significantly induced apoptosis and profoundly affected the transcriptome profiles of LMECs. Hyperoxia significantly up-regulated miR-181c-5p expression, while down-regulated the expressions of NCAPG and lncRNA-DLEU2 in LMECs. Moreover, LncRNA-DLEU2 could bind complementarily to miR-181c-5p and acted as a miRNA sponge to block the inhibitory effect of miR-181c-5p on its target gene NCAPG. The down-regulation of lncRNA-DLEU2 induced by hyperoxia abrogated its inhibition of miR-181c-5p function, which together with the hyperoxia-induced upregulation of miR-181c-5p, all these significantly decreased the expression of NCAPG, resulting in apoptosis of LMECs. Our results demonstrated a ceRNA network consisting of lncRNA-DLEU2, miR-181c-5p and NCAPG, which played an important role in hyperoxia-induced apoptosis of vascular endothelial injury. Our findings will contribute to the full understanding of the harmful effects of hyperoxia and to find ways for effectively mitigating its deleterious effects.


1986 ◽  
Vol 61 (1) ◽  
pp. 331-337 ◽  
Author(s):  
A. W. Smits ◽  
N. H. West ◽  
W. W. Burggren

Pulmonary hemodynamics and net transcapillary fluid flux (NTFF) were measured in conscious toads before and following bilateral denervation of the recurrent laryngeal nerves (rLN), which contain afferents from baroreceptors located in the pulmocutaneous arteries. Denervation caused an acute doubling of the arterial-venous pressure gradient across the lung and a threefold increase in pulmonary blood flow. Calculated pulmonary vascular resistance fell and remained below control values through the period of experimentation. NTFF increased by an order of magnitude (0.74–7.77 ml X kg-1 X min-1), as filtration increased in response to the hemodynamic changes caused by rLN denervation. There was a better correlation between NTFF and pulmonary blood flow than between NTFF and pulmonary driving pressure. Our results support the view that tonic neural input from pulmocutaneous baroreceptors protects the anuran lung from edema by restraining pulmonary driving pressure and blood flow and perhaps by reflexly maintaining vascular tone in the extrinsic pulmonary artery, therefore tending to increase the pre-to-postpulmonary capillary resistance ratio and biasing the Starling relationship in the pulmonary capillaries against filtration.


1990 ◽  
Vol 69 (5) ◽  
pp. 1767-1778 ◽  
Author(s):  
G. P. Downey ◽  
D. E. Doherty ◽  
B. Schwab ◽  
E. L. Elson ◽  
P. M. Henson ◽  
...  

Leukocytes within the circulation are in dynamic equilibrium with a marginated pool, thought to reside mainly within the pulmonary capillaries. The size discrepancy between the mean diameter of circulating leukocytes (6-8 microns) and that of the pulmonary capillaries (approximately 5.5 microns) forces the cells to deform in order to transit the capillary bed. Consequently, we investigated the hypothesis that the biophysical properties of cell size and deformability determined differential leukocyte retention in the lung. Comparison of the filtration properties of human neutrophils, lymphocytes, monocytes, platelets, and erythrocytes through polycarbonate filters (5-micron pore diameter) revealed that the largest leukocytes (neutrophils and monocytes) were retained to the greatest extent and the smaller cells (lymphocytes and platelets) the least. Undifferentiated HL-60 cells, of greater diameter than their differentiated counterparts, were also retained to a greater extent, confirming that cell size was one important determinant of retention in these model capillaries. However, compared with neutrophils, which are of similar diameter, monocytes were retained to a greater extent, suggesting that monocytes might be less deformable than neutrophils. To test this hypothesis, deformability was measured directly using the cell poker. Monocytes were found to be the stiffest, neutrophils the softest, and lymphocytes intermediate. Glutaraldehyde treatment of neutrophils markedly increased their stiffness and decreased their ability to transit the pores of the filters in vitro and the pulmonary microvasculature of rabbits without changing their adhesive properties or size. These observations support the hypothesis that biophysical properties of leukocytes (size and deformability) determine in part their ability to transit the pulmonary capillaries and may determine the magnitude of their marginated pools.


1997 ◽  
Vol 6 (4) ◽  
pp. 377-386 ◽  
Author(s):  
Sanjeev Gupta ◽  
Srinivasa Rao G. Vasa ◽  
Pankaj Rajvanshi ◽  
Lionel S. Zuckier ◽  
Christopher J. Palestro ◽  
...  

Knowledge of the kinetics of cell distribution in vascular beds will help optimize engraftment of transplanted hepatocytes. To noninvasively localize transplanted cells in vivo, we developed conditions for labeling rat hepatocytes with 99mTc–pertechnetate. The incorporated 99mTc was bound to intracellular proteins and did not impair cell viability. When 99mTc hepatocytes were intrasplenically injected into normal rats, cells entered liver sinusoids with time–activity curves demonstrating instantaneous cell translocations. 99mTc activity in removed organs was in liver or spleen, and lungs showed little activity. However, when cells were intrasplenically transplanted into rats with portasystemic collaterals, 99mTc appeared in both liver sinusoids and pulmonary alveolar capillaries. To further localize cells, we transplanted DPPIV+ F344 rat hepatocytes into syngeneic DPPIV – recipients. Histochemical staining for DPPIV activity demonstrated engraftment of intrasplenically transplanted cells in liver parenchyma. In contrast, when 99mTc hepatocytes were injected into a peripheral vein, cells were entrapped in pulmonary capillaries but were subsequently broken down with redistribution of 99mTc activity elsewhere. Intact DPPIV+ hepatocytes were identified in lungs, whereas only cell fragments were present in liver, spleen, or kidneys. These findings indicate that although the pulmonary vascular bed offers advantages of easy accessibility and a relatively large capacity, significant early cell destruction is an important limitation.


2002 ◽  
Vol 92 (3) ◽  
pp. 1183-1190 ◽  
Author(s):  
Robert G. Presson ◽  
William A. Baumgartner ◽  
Amanda J. Peterson ◽  
Robb W. Glenny ◽  
Wiltz W. Wagner

Capillaries recruit when pulmonary arterial pressure rises. The duration of increased pressure imposed in such experiments is usually on the order of minutes, although recent work shows that the recruitment response can occur in <4 s. In the present study, we investigate whether the brief pressure rise during cardiac systole can also cause recruitment and whether the recruitment is maintained during diastole. To study these basic aspects of pulmonary capillary hemodynamics, isolated dog lungs were pump perfused alternately by steady flow and pulsatile flow with the mean arterial and left atrial pressures held constant. Several direct measurements of capillary recruitment were made with videomicroscopy. The total number and total length of perfused capillaries increased significantly during pulsatile flow by 94 and 105%, respectively. Of the newly recruited capillaries, 92% were perfused by red blood cells throughout the pulsatile cycle. These data provide the first direct account of how the pulmonary capillaries respond to pulsatile flow by showing that capillaries are recruited during the systolic pulse and that, once open, the capillaries remain open throughout the pulsatile cycle.


1994 ◽  
Vol 77 (4) ◽  
pp. 1795-1800 ◽  
Author(s):  
J. C. Hogg ◽  
H. O. Coxson ◽  
M. L. Brumwell ◽  
N. Beyers ◽  
C. M. Doerschuk ◽  
...  

Pulmonary capillary transit times were examined in patients who required lung resection by use of 99mTc-labeled macroaggregates (99Tc-MAA) and chromium-labeled erythrocytes (51Cr-RBC) to measure regional blood flow and volume in the resected lung. Cell flow (cells.ml-1.s-1) to each resected lung sample was determined by multiplying the number of polymorphonuclear leukocytes (PMN) per milliliter of circulating blood by the blood flow to that sample. Capillary blood volume was obtained by multiplying the morphometrically determined fraction of pulmonary blood in capillaries by the total 51Cr-RBC volume in each sample. Cell concentrations (cells/ml) in capillary blood were calculated morphometrically, and capillary transit times were obtained by dividing cell concentration by cell flow. The results show that PMN transit times were 60–100 times longer than the RBC transit times, with a 22% overlap between their distributions. We conclude that PMN are concentrated with respect to RBC in pulmonary capillary blood because of differences in their transit times and that these long transit times provide an opportunity for PMN-endothelial interactions.


1989 ◽  
Vol 67 (1) ◽  
pp. 88-95 ◽  
Author(s):  
C. M. Doerschuk ◽  
M. F. Allard ◽  
J. C. Hogg

Complement activation in vivo produces neutropenia and pulmonary sequestration of neutrophils (PMNs) whereas in vitro activation increases PMN adherence and decreases PMN deformability. The present study examined PMN kinetics in vivo to determine if this sequestration was specific to the lung. Venous or arterial injections of radiolabeled PMNs were given to animals receiving infusions of zymosan-activated plasma (ZAP) or saline, and the PMN distribution was evaluated 10 min later. In control animals, the relative size of the marginated and circulating PMN pools was similar after venous or arterial injection and regional PMN retention increased as blood velocity slowed. ZAP infusion produced threefold increases in PMNs within pulmonary capillaries after venous injection and PMN retention was independent of blood velocity. After arterial injection, ZAP infusion produced PMN sequestration in all organs. Rigid (glutaraldehyde-fixed) PMNs injected into control rabbits showed increased lung recoveries similar to those of fresh PMNs injected into ZAP-treated rabbits. We conclude that activation of the complement system causes PMN sequestration in both the pulmonary and the systemic microvasculature and that the decrease in PMN deformability that occurs with activation of the PMN may be important in the genesis of PMN sequestration.


2001 ◽  
Vol 90 (2) ◽  
pp. 545-564 ◽  
Author(s):  
Yaqi Huang ◽  
Claire M. Doerschuk ◽  
Roger D. Kamm

A computational model of the pulmonary microcirculation is developed and used to examine blood flow from arteriole to venule through a realistically complex alveolar capillary bed. Distributions of flow, hematocrit, and pressure are presented, showing the existence of preferential pathways through the system and of large segment-to-segment differences in all parameters, confirming and extending previous work. Red blood cell (RBC) and neutrophil transit are also analyzed, the latter drawing from previous studies of leukocyte aspiration into micropipettes. Transit time distributions are in good agreement with in vivo experiments, in particular showing that neutrophils are dramatically slowed relative to the flow of RBCs because of the need to contract and elongate to fit through narrower capillaries. Predicted neutrophil transit times depend on how the effective capillary diameter is defined. Transient blockage by a neutrophil can increase the local pressure drop across a segment by 100–300%, leading to temporal variations in flow and pressure as seen by videomicroscopy. All of these effects are modulated by changes in transpulmonary pressure and arteriolar pressure, although RBCs, neutrophils, and rigid microspheres all behave differently.


Sign in / Sign up

Export Citation Format

Share Document