A Fully Digital Integrated CMOS Hopfield Network Including the Learning Algorithm

Author(s):  
Michel Weinfeld
2018 ◽  
Author(s):  
Oliver Attie ◽  
Brian Sulkow ◽  
Chong Di ◽  
Wei-Gang Qiu

AbstractLearning algorithms have been proposed as a non-selective mechanism capable of creating complex adaptive systems in life. Evolutionary learning however has not been demonstrated to be a plausible cause for the origin of a specific molecular system. Here we show that genetic codes as optimal as the Standard Genetic Code (SGC) emerge readily by following a molecular analog of the Hebb’s rule (“neurons fire together, wire together”). Specifically, error-minimizing genetic codes are obtained by maximizing the number of physio-chemically similar amino acids assigned to evolutionarily similar codons. Formulating genetic code as a Traveling Salesman Problem (TSP) with amino acids as “cities” and codons as “tour positions” and implemented with a Hopfield neural network, the unsupervised learning algorithm efficiently finds an abundance of genetic codes that are more error-minimizing than SGC. Drawing evidence from molecular phylogenies of contemporary tRNAs and aminoacyl-tRNA synthetases, we show that co-diversification between gene sequences and gene functions, which cumulatively captures functional differences with sequence differences and creates a genomic “memory” of the living environment, provides the biological basis for the Hebbian learning algorithm. Like the Hebb’s rule, the locally acting phylogenetic learning rule, which may simply be stated as increasing phylogenetic divergence for increasing functional difference, could lead to complex and robust life systems. Natural selection, while essential for maintaining gene function, is not necessary to act at system levels. For molecular systems that are self-organizing through phylogenetic learning, the TSP model and its Hopfield network solution offer a promising framework for simulating emerging behavior, forecasting evolutionary trajectories, and designing optimal synthetic systems.


2003 ◽  
Vol 15 (7) ◽  
pp. 1605-1619 ◽  
Author(s):  
Rong Long Wang ◽  
Zheng Tang ◽  
Qi Ping Cao

In this article, we present a solution to the maximum clique problem using a gradient-ascent learning algorithm of the Hopfield neural network. This method provides a near-optimum parallel algorithm for finding a maximum clique. To do this, we use the Hopfield neural network to generate a near-maximum clique and then modify weights in a gradient-ascent direction to allow the network to escape from the state of near-maximum clique to maximum clique or better. The proposed parallel algorithm is tested on two types of random graphs and some benchmark graphs from the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS). The simulation results show that the proposed learning algorithm can find good solutions in reasonable computation time.


2018 ◽  
Author(s):  
C.H.B. van Niftrik ◽  
F. van der Wouden ◽  
V. Staartjes ◽  
J. Fierstra ◽  
M. Stienen ◽  
...  

2020 ◽  
pp. 1-12
Author(s):  
Li Dongmei

English text-to-speech conversion is the key content of modern computer technology research. Its difficulty is that there are large errors in the conversion process of text-to-speech feature recognition, and it is difficult to apply the English text-to-speech conversion algorithm to the system. In order to improve the efficiency of the English text-to-speech conversion, based on the machine learning algorithm, after the original voice waveform is labeled with the pitch, this article modifies the rhythm through PSOLA, and uses the C4.5 algorithm to train a decision tree for judging pronunciation of polyphones. In order to evaluate the performance of pronunciation discrimination method based on part-of-speech rules and HMM-based prosody hierarchy prediction in speech synthesis systems, this study constructed a system model. In addition, the waveform stitching method and PSOLA are used to synthesize the sound. For words whose main stress cannot be discriminated by morphological structure, label learning can be done by machine learning methods. Finally, this study evaluates and analyzes the performance of the algorithm through control experiments. The results show that the algorithm proposed in this paper has good performance and has a certain practical effect.


2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Lin Lin ◽  
Xiufang Liang

The online English teaching system has certain requirements for the intelligent scoring system, and the most difficult stage of intelligent scoring in the English test is to score the English composition through the intelligent model. In order to improve the intelligence of English composition scoring, based on machine learning algorithms, this study combines intelligent image recognition technology to improve machine learning algorithms, and proposes an improved MSER-based character candidate region extraction algorithm and a convolutional neural network-based pseudo-character region filtering algorithm. In addition, in order to verify whether the algorithm model proposed in this paper meets the requirements of the group text, that is, to verify the feasibility of the algorithm, the performance of the model proposed in this study is analyzed through design experiments. Moreover, the basic conditions for composition scoring are input into the model as a constraint model. The research results show that the algorithm proposed in this paper has a certain practical effect, and it can be applied to the English assessment system and the online assessment system of the homework evaluation system algorithm system.


Author(s):  
Kunal Parikh ◽  
Tanvi Makadia ◽  
Harshil Patel

Dengue is unquestionably one of the biggest health concerns in India and for many other developing countries. Unfortunately, many people have lost their lives because of it. Every year, approximately 390 million dengue infections occur around the world among which 500,000 people are seriously infected and 25,000 people have died annually. Many factors could cause dengue such as temperature, humidity, precipitation, inadequate public health, and many others. In this paper, we are proposing a method to perform predictive analytics on dengue’s dataset using KNN: a machine-learning algorithm. This analysis would help in the prediction of future cases and we could save the lives of many.


Sign in / Sign up

Export Citation Format

Share Document