scholarly journals Normobaric Hyperoxia Does Not Change Optical Scattering or Pathlength but Does Increase Oxidised Cytochrome c Oxidase Concentration in Patients with Brain Injury

Author(s):  
Arnab Ghosh ◽  
Ilias Tachtsidis ◽  
Christina Kolyva ◽  
David Highton ◽  
Clare Elwell ◽  
...  
2016 ◽  
Vol 37 (8) ◽  
pp. 2910-2920 ◽  
Author(s):  
Arnab Ghosh ◽  
David Highton ◽  
Christina Kolyva ◽  
Ilias Tachtsidis ◽  
Clare E Elwell ◽  
...  

Acute brain injury is associated with depressed aerobic metabolism. Below a critical mitochondrial pO2 cytochrome c oxidase, the terminal electron acceptor in the mitochondrial respiratory chain, fails to sustain oxidative phosphorylation. After acute brain injury, this ischaemic threshold might be shifted into apparently normal levels of tissue oxygenation. We investigated the oxygen dependency of aerobic metabolism in 16 acutely brain-injured patients using a 120-min normobaric hyperoxia challenge in the acute phase (24–72 h) post-injury and multimodal neuromonitoring, including transcranial Doppler ultrasound-measured cerebral blood flow velocity, cerebral microdialysis-derived lactate-pyruvate ratio (LPR), brain tissue pO2 (pbrO2), and tissue oxygenation index and cytochrome c oxidase oxidation state (oxCCO) measured using broadband spectroscopy. Increased inspired oxygen resulted in increased pbrO2 [ΔpbrO2 30.9 mmHg p < 0.001], reduced LPR [ΔLPR −3.07 p = 0.015], and increased cytochrome c oxidase (CCO) oxidation (Δ[oxCCO] + 0.32 µM p < 0.001) which persisted on return-to-baseline (Δ[oxCCO] + 0.22 µM, p < 0.01), accompanied by a 7.5% increase in estimated cerebral metabolic rate for oxygen ( p = 0.038). Our results are consistent with an improvement in cellular redox state, suggesting oxygen-limited metabolism above recognised ischaemic pbrO2 thresholds. Diffusion limitation or mitochondrial inhibition might explain these findings. Further investigation is warranted to establish optimal oxygenation to sustain aerobic metabolism after acute brain injury.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ajay Rajaram ◽  
Daniel Milej ◽  
Marianne Suwalski ◽  
Lilian Kebaya ◽  
Matthew Kewin ◽  
...  

AbstractA major concern with preterm birth is the risk of neurodevelopmental disability. Poor cerebral circulation leading to periods of hypoxia is believed to play a significant role in the etiology of preterm brain injury, with the first three days of life considered the period when the brain is most vulnerable. This study focused on monitoring cerebral perfusion and metabolism during the first 72 h after birth in preterm infants weighing less than 1500 g. Brain monitoring was performed by combining hyperspectral near-infrared spectroscopy to assess oxygen saturation and the oxidation state of cytochrome c oxidase (oxCCO), with diffuse correlation spectroscopy to monitor cerebral blood flow (CBF). In seven of eight patients, oxCCO remained independent of CBF, indicating adequate oxygen delivery despite any fluctuations in cerebral hemodynamics. In the remaining infant, a significant correlation between CBF and oxCCO was found during the monitoring periods on days 1 and 3. This infant also had the lowest baseline CBF, suggesting the impact of CBF instabilities on metabolism depends on the level of blood supply to the brain. In summary, this study demonstrated for the first time how continuous perfusion and metabolic monitoring can be achieved, opening the possibility to investigate if CBF/oxCCO monitoring could help identify preterm infants at risk of brain injury.


2014 ◽  
Vol 570 ◽  
pp. 86-91 ◽  
Author(s):  
Ying li Gu ◽  
Li wei Zhang ◽  
Ning Ma ◽  
Lin lin Ye ◽  
De xin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document