Nondestructive Characterization of Multilayer Thin Films By X-Ray Reflectivity

1995 ◽  
pp. 139-143
Author(s):  
T. C. Huang
1994 ◽  
Vol 38 ◽  
pp. 139-143
Author(s):  
T. C. Huang

Abstract The X-ray reflectivity technique was used to study the annealing effect on layer structure of Ta/FeMn/NiFe/Cu/NiFe/Ta multilayer thin films on Si substrates. High-resolution specular reflectivity data were collected and analyzed by least-squares refinement. Results on layer thickness, density and roughness were obtained and correlated with the magnetic properties of the films.


2013 ◽  
Vol 743-744 ◽  
pp. 910-914
Author(s):  
Ting Han ◽  
Geng Rong Chang ◽  
Yun Jin Sun ◽  
Fei Ma ◽  
Ke Wei Xu

Si/C multilayer thin films were prepared by magnetron sputtering and post-annealing in N2 atmosphere at 1100 for 1h. X-ray diffraction (XRD), Raman scattering and high-resolution transmission electron microscopy (HRTEM) were applied to study the microstructures of the thin films. For the case of Si/C modulation ratio smaller than 1,interlayer diffusion is evident, which promotes the formation of α-SiC during thermal annealing. If the modulation ratio is larger than 1, the Si sublayers are partially crystallized, and the thicker the Si sublayers are, the crystallinity increases. To be excited, brick-shaped nc-Si is directly observed by HRTEM. The brick-shaped nc-Si appears to be more regular near the Si (100) substrate but with twin defects. The results are instructive in the application of solar cells.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 655
Author(s):  
Marcionilo Silva ◽  
Ana S. Ramos ◽  
M. Teresa Vieira ◽  
Sónia Simões

This paper aims to investigate the diffusion bonding of Ti6Al4V to Al2O3. The potential of the use of reactive nanolayered thin films will also be investigated. For this purpose, Ni/Ti multilayer thin films with a 50 nm modulation period were deposited by magnetron sputtering onto the base materials. Diffusion bonding experiments were performed at 800 °C, under 50 MPa and a dwell time of 60 min, with and without interlayers. Microstructural characterization of the interface was conducted through scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). The joints experiments without interlayer were unsuccessful. The interface is characterized by the presence of a crack close to the Al2O3 base material. The results revealed that the Ni/Ti reactive multilayers improved the diffusion bonding process, allowing for sound joints to be obtained at 800 °C for 60 min. The interface produced is characterized by a thin thickness and is mainly composed of NiTi and NiTi2 reaction layers. Mechanical characterization of the joint was assessed by hardness and reduced Young’s modulus distribution maps that enhance the different phases composing the interface. The hardness maps showed that the interface exhibits a hardness distribution similar to the Al2O3, which can be advantageous to the mechanical behavior of the joints.


1992 ◽  
Vol 219 (1-2) ◽  
pp. 63-68 ◽  
Author(s):  
J. Chaudhuri ◽  
S.M. Alyan ◽  
A.F. Jankowski

2017 ◽  
Vol 95 (9) ◽  
Author(s):  
Samuel Flewett ◽  
Durgamadhab Mishra ◽  
Thiago J. A. Mori ◽  
Christian M. Günther ◽  
Juliano C. Denardin ◽  
...  

Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


1992 ◽  
Vol 270 ◽  
Author(s):  
Haojie Yuan ◽  
R. Stanley Williams

ABSTRACTThin films of pure germanium-carbon alloys (GexC1−x with x ≈ 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) have been grown on Si(100) and A12O3 (0001) substrates by pulsed laser ablation in a high vacuum chamber. The films were analyzed by x-ray θ-2θ diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), conductivity measurements and optical absorption spectroscopy. The analyses of these new materials showed that films of all compositions were amorphous, free of contamination and uniform in composition. By changing the film composition, the optical band gap of these semiconducting films was varied from 0.00eV to 0.85eV for x = 0.0 to 1.0 respectively. According to the AES results, the carbon atoms in the Ge-C alloy thin film samples has a bonding configuration that is a mixture of sp2 and sp3 hybridizations.


1999 ◽  
Vol 79 (6) ◽  
pp. 1423-1442 ◽  
Author(s):  
G. Lucadamo ◽  
M. Watanabe ◽  
K. Barmak ◽  
D. B. Williams ◽  
C. Michaelsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document