Fitting Protein Structures to Experimental Data

Author(s):  
Jeffrey C. Hoch ◽  
Alan S. Stern ◽  
Peter J. Connolly
2010 ◽  
Vol 10 (1) ◽  
pp. 39 ◽  
Author(s):  
Annamária F Ángyán ◽  
Balázs Szappanos ◽  
András Perczel ◽  
Zoltán Gáspári

2021 ◽  
Author(s):  
Huan Yang ◽  
Zhaoping Xiong ◽  
Francesco Zonta

AbstractClassical potentials are widely used to describe protein physics, due to their simplicity and accuracy, but they are continuously challenged as real applications become more demanding with time. Deep neural networks could help generating alternative ways of describing protein physics. Here we propose an unsupervised learning method to derive a neural network energy function for proteins. The energy function is a probability density model learned from plenty of 3D local structures which have been extensively explored by evolution. We tested this model on a few applications (assessment of protein structures, protein dynamics and protein sequence design), showing that the neural network can correctly recognize patterns in protein structures. In other words, the neural network learned some aspects of protein physics from experimental data.


2015 ◽  
Vol 71 (10) ◽  
pp. 1228-1234 ◽  
Author(s):  
Jobie Kirkwood ◽  
David Hargreaves ◽  
Simon O'Keefe ◽  
Julie Wilson

The Protein Data Bank (PDB) is the largest available repository of solved protein structures and contains a wealth of information on successful crystallization. Many centres have used their own experimental data to draw conclusions about proteins and the conditions in which they crystallize. Here, data from the PDB were used to reanalyse some of these results. The most successful crystallization reagents were identified, the link between solution pH and the isoelectric point of the protein was investigated and the possibility of predicting whether a protein will crystallize was explored.


2020 ◽  
Author(s):  
M. Sinnott ◽  
S. Malhotra ◽  
M.S. Madhusudhan ◽  
K. Thalassinos ◽  
M. Topf

SUMMARYMonolinks are produced in a Chemical Crosslinking Mass Spectrometry experiment and are more abundant than crosslinks. They convey residue exposure information, but so far have not been used in the modelling of protein structures. Here we present the Monolink Depth Score (MoDS), for assessing structural models based on the depth of monolinked residues, corresponding to their distance to the nearest bulk water. Using simulated and reprocessed experimental data from the Proteomic Identification Database, we compare the performance of MoDS to MNXL - our previously-developed score for assessing models based on crosslinking data. Our results show that MoDS can be used to effectively score model structures based on monolinks, and that combining it with MNXL leads to overall higher scoring performance. The work strongly supports the use of monolink data in the context of integrative structure determination. We also present XLM-Tools, a programme to assist in this effort, available at: https://github.com/Topf-Lab/XLM-Tools.


Author(s):  
Yuanpeng Janet Huang ◽  
Ning Zhang ◽  
Beate Bersch ◽  
Krzysztof Fidelis ◽  
Masayori Inouye ◽  
...  

NMR studies can provide unique information about protein conformations in solution. In CASP14, three reference structures provided by solution NMR methods were available (T1027, T1029, and T1055), as well as a fourth data set of NMR-derived contacts for a integral membrane protein (T1088). For the three targets with NMR-based structures, the best prediction results ranged from very good (GDT_TS = 0.90, for T1055) to poor (GDT_TS = 0.47, for T1029). We explored the basis of these results by comparing all CASP14 prediction models against experimental NMR data. For T1027, the NMR data reveal extensive internal dynamics, presenting a unique challenge for protein structure prediction. The analysis of T1029 motivated exploration of a novel method of “inverse structure determination”, in which an AF2 model was used to guide NMR data analysis. NMR data provided to CASP predictor groups for target T1088, a 238-residue integral membrane porin, was also used to assess several NMR-assisted prediction methods. Most groups involved in this exercise generated similar beta-barrel models, with good agreement with the experimental data. However, as was also observed in CASP13, some pure prediction groups that did not use the NMR data generated structures for T1088 that better fit the NMR data than the models generated using these experimental data. These results demonstrate the remarkable power of modern methods to predict structures of proteins with accuracies rivaling solution NMR structures, and that it is now possible to reliably use prediction models to guide and complement experimental NMR data analysis.


Author(s):  
Wei Li

As of today, there is not any direct report yet of the degree to which missing residues exist for experimentally determined membrane protein (MP) structures, which constitute more than half of current drug targets. With a chain- and position-specific visualisation and a statistical analysis of all MP structures inside PDB (as of September 25, 2019), this article argues that the experimentally uncharted territories (EUTs, i.e., consisting of missing residues) within PDB are pluggable and should be plugged with an experimental data-driven hybrid approach, and calls for continued development of MP structural determination with less and less EUTs, in light of MPs' crucial role in biological and biomedical research, both fundamental and pharmaceutical.


Author(s):  
Maciej Pawel Ciemny ◽  
Aleksandra Elzbieta Badaczewska-Dawid ◽  
Monika Pikuzinska ◽  
Andrzej Kolinski ◽  
Sebastian Kmiecik

The description of protein disordered states is important for understanding protein folding mechanisms and their functions. In this short review, we briefly describe a simulation approach to modeling disordered protein interactions and unfolded states of globular proteins. It is based on the CABS coarse-grained protein model that uses a Monte Carlo (MC) sampling scheme and a knowledge-based statistical force field. We review several case studies showing that description of protein disordered states resulting from CABS simulations is consistent with experimental data. The case studies comprise investigations of protein-peptide binding and protein folding processes. The CABS model has been recently made available as the simulation engine of multiscale modeling tools enabling studies of protein-peptide docking and protein flexibility. Those tools offer customization of the modeling process, driving the conformational search using distance restraints, reconstruction of selected models to all-atom resolution and studies of large protein systems in a reasonable computational time. Therefore, CABS can be combined in integrative modeling pipelines incorporating experimental data and other modeling tools of various resolution.


2019 ◽  
Vol 20 (3) ◽  
pp. 606 ◽  
Author(s):  
Maciej Ciemny ◽  
Aleksandra Badaczewska-Dawid ◽  
Monika Pikuzinska ◽  
Andrzej Kolinski ◽  
Sebastian Kmiecik

The description of protein disordered states is important for understanding protein folding mechanisms and their functions. In this short review, we briefly describe a simulation approach to modeling protein interactions, which involve disordered peptide partners or intrinsically disordered protein regions, and unfolded states of globular proteins. It is based on the CABS coarse-grained protein model that uses a Monte Carlo (MC) sampling scheme and a knowledge-based statistical force field. We review several case studies showing that description of protein disordered states resulting from CABS simulations is consistent with experimental data. The case studies comprise investigations of protein–peptide binding and protein folding processes. The CABS model has been recently made available as the simulation engine of multiscale modeling tools enabling studies of protein–peptide docking and protein flexibility. Those tools offer customization of the modeling process, driving the conformational search using distance restraints, reconstruction of selected models to all-atom resolution, and simulation of large protein systems in a reasonable computational time. Therefore, CABS can be combined in integrative modeling pipelines incorporating experimental data and other modeling tools of various resolution.


Author(s):  
A. Gómez ◽  
P. Schabes-Retchkiman ◽  
M. José-Yacamán ◽  
T. Ocaña

The splitting effect that is observed in microdiffraction pat-terns of small metallic particles in the size range 50-500 Å can be understood using the dynamical theory of electron diffraction for the case of a crystal containing a finite wedge. For the experimental data we refer to part I of this work in these proceedings.


Author(s):  
K.B. Reuter ◽  
D.B. Williams ◽  
J.I. Goldstein

In the Fe-Ni system, although ordered FeNi and ordered Ni3Fe are experimentally well established, direct evidence for ordered Fe3Ni is unconvincing. Little experimental data for Fe3Ni exists because diffusion is sluggish at temperatures below 400°C and because alloys containing less than 29 wt% Ni undergo a martensitic transformation at room temperature. Fe-Ni phases in iron meteorites were examined in this study because iron meteorites have cooled at slow rates of about 10°C/106 years, allowing phase transformations below 400°C to occur. One low temperature transformation product, called clear taenite 2 (CT2), was of particular interest because it contains less than 30 wtZ Ni and is not martensitic. Because CT2 is only a few microns in size, the structure and Ni content were determined through electron diffraction and x-ray microanalysis. A Philips EM400T operated at 120 kV, equipped with a Tracor Northern 2000 multichannel analyzer, was used.


Sign in / Sign up

Export Citation Format

Share Document