Finite Field Local Field Catastrophe — Application to the Spectra of KCNxCl1−x

1979 ◽  
pp. 81-81
Author(s):  
C. M. Varma
Keyword(s):  
2019 ◽  
Vol 155 (12) ◽  
pp. 2334-2353 ◽  
Author(s):  
Qing Lu ◽  
Weizhe Zheng

We show that compatible systems of $\ell$-adic sheaves on a scheme of finite type over the ring of integers of a local field are compatible along the boundary up to stratification. This extends a theorem of Deligne on curves over a finite field. As an application, we deduce the equicharacteristic case of classical conjectures on $\ell$-independence for proper smooth varieties over complete discrete valuation fields. Moreover, we show that compatible systems have compatible ramification. We also prove an analogue for integrality along the boundary.


2012 ◽  
Vol 55 (4) ◽  
pp. 673-688 ◽  
Author(s):  
Avraham Aizenbud ◽  
Dmitry Gourevitch

AbstractLet F be a non-Archimedean local field or a finite field. Let n be a natural number and k be 1 or 2. Consider G := GLn+k(F) and let M := GLn(F) × GLk(F) < G be a maximal Levi subgroup. Let U < G be the corresponding unipotent subgroup and let P = MU be the corresponding parabolic subgroup. Let be the Jacquet functor, i.e., the functor of coinvariants with respect toU. In this paper we prove that J is a multiplicity free functor, i.e., dim HomM(J(π), ρ) ≤ 1, for any irreducible representations π of G and ρ of M. We adapt the classical method of Gelfand and Kazhdan, which proves the “multiplicity free” property of certain representations to prove the “multiplicity free” property of certain functors. At the end we discuss whether other Jacquet functors are multiplicity free.


1966 ◽  
Vol 27 (1) ◽  
pp. 323-329 ◽  
Author(s):  
D. S. Rim ◽  
G. Whaples

A field k is called quasi-finite if it is perfect and if Gk≈Ż where Gk is the Galois group of the algebraic closure kc over k and Ż is the completion of the additive group of the rational integers. The classical reciprocity law on the local field with finite residue field is well-known to hold on local fields with quasi-finite residue field ([4] [5]). Thus it is natural to ask if the global reciprocity law should hold in the ordinary sense (see § 1 below) on the function-fields of one variable over quasi-finite field. We consider here two basic prototypes of non-finite quasi-finite fields:


2013 ◽  
Vol 133 (8) ◽  
pp. 1493-1500 ◽  
Author(s):  
Ryuji Kano ◽  
Kenichi Usami ◽  
Takahiro Noda ◽  
Tomoyo I. Shiramatsu ◽  
Ryohei Kanzaki ◽  
...  

2014 ◽  
Vol 51 (4) ◽  
pp. 454-465
Author(s):  
Lu-Ming Shen ◽  
Huiping Jing

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q ((X^{ - 1} ))$$ \end{document} denote the formal field of all formal Laurent series x = Σ n=ν∞anX−n in an indeterminate X, with coefficients an lying in a given finite field \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}. For any \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} with deg β > 1, it is known that for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$x \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} (with respect to the Haar measure), x is β-normal. In this paper, we show the inverse direction, i.e., for any x, for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document}, x is β-normal.


Sign in / Sign up

Export Citation Format

Share Document