Variation of X-Ray Spectral Line Position with Ambient-Temperature Change: a Source of Error in X-Ray Spectrography

1965 ◽  
pp. 431-442 ◽  
Author(s):  
Frederick S. Lee ◽  
William J. Campbell
1964 ◽  
Vol 8 ◽  
pp. 431-442
Author(s):  
Frederick S. Lee ◽  
William J. Campbell

AbstractThe effect of temperature change on LiF, ADP, and EDDT analyzing crystals was studied by measuring the change In intensity of a selected X-ray spectral line while maintaining a constant 2θ position on the spectrometer. A change in interplanar spacing due to thermal expansion and contraction satisfactorily account for experimentally observed line shifts for LiF and ADP. EDDT showed a large unexplained decrease in reflectivity with increasing ambient temperature.An equation was developed to express the change in intensity at a constant 2θ position as an exponential function of temperature. In this equation the thermal expansion coefficients of the principal axes of the crystal, the width of the spectral line at half-height, and the Bragg angle appear as factors. Intensity changes due to peak shift were tabulated for LiF, ADP, NaCl, silicon, germanium, quartz, calcite, fiuorite, and topaz.


2006 ◽  
Vol 2 (S238) ◽  
pp. 475-476
Author(s):  
Alexander F. Zakharov

AbstractRecent X-ray observations of microquasars and Seyfert galaxies reveal broad emission lines in their spectra, which can arise in the innermost parts of accretion disks. Recently Müller & Camenzind (2004) classified different types of spectral line shapes and described their origin. Zakharov (2006b) clarified their conclusions about an origin of doubled peaked and double horned line shapes in the framework of a radiating annulus model and discussed s possibility to evaluate black hole parameters analyzing spectral line shapes.


2006 ◽  
Vol 50 (7-8) ◽  
pp. 637-639
Author(s):  
G.J. Fishman ◽  
J.E. Grindlay ◽  
J. Hong ◽  
D.H. Hartmann ◽  
S. Vadawale ◽  
...  
Keyword(s):  
X Ray ◽  

2012 ◽  
Vol 197 ◽  
pp. 139-143
Author(s):  
Hua Bai ◽  
Yi Du Zhang

The change of ambient temperature will cause deformation during the machining process of large-scale aerospace monolithic component. Based on finite element simulation, thermally induced deformation of reinforcing plate is studied in such aspects as reinforcement structure, clamping method and temperature change, and contact function in finite element software is used to simulate the unilateral constraint between workpiece and worktable. The results indicate that reinforcing plate will produce warping deformation due to the change of ambient temperature. Different reinforcement structures and clamping methods have important influence on the deformation positions and degrees, and the deformation is proportional to the temperature change.


Author(s):  
Sangchae Kim ◽  
Bharath Bethala ◽  
Simone Ghirlanda ◽  
Senthil N. Sambandam ◽  
Shekhar Bhansali

Magnetocaloric refrigeration is increasingly being explored as an alternative technology for cooling. This paper presents the design and fabrication of a micromachined magnetocaloric cooler. The cooler consists of fluidic microchannels (in a Si wafer), diffused temperature sensors, and a Gd5(Si2Ge2) magnetocaloric refrigeration element. A magnetic field of 1.5 T is applied using an electromagnet to change the entropy of the magnetocaloric element for different ambient temperature conditions ranging from 258 K to 280 K, and the results are discussed. The tests show a maximum temperature change of 7 K on the magnetocaloric element at 258 K. The experimental results co-relate well with the entropy change of the material.


2007 ◽  
Vol 62 (10) ◽  
pp. 1285-1290 ◽  
Author(s):  
Hans-Wolfram Lerner ◽  
Inge Sänger ◽  
Kurt Polborn ◽  
Michael Bolte ◽  
Matthias Wagner

The thermolabile triazenides M[tBu3SiNNNSiMetBu2] (M = Li, Na) are accessible from the reaction of tBu2MeSiN3 with the silanides MSitBu3 (M = Li, Na) at −78 °C in THF. At r. t. N2 elimination from the triazenides M[tBu3SiNNNSiMetBu2] (M = Li, Na) takes place with the formation of M[N(SiMetBu2)(SitBu3)] (M = Li, Na). X-Ray quality crystals of Li(THF)[N(SiMetBu2)(SitBu3)] (orthorhombic, Pna21) are obtained from a benzene solution at ambient temperature. In contrast to the structures of the unsolvated silanides MSitBu3 (M = Li, Na), the THF adduct Li(THF)3SitBu3 is monomeric in the solid state (orthorhombic, Pna21).


2021 ◽  
Vol 11 (5) ◽  
pp. 724-731
Author(s):  
Hemin Liu ◽  
Qian Huang ◽  
Liang Zhao

This study investigates the deterioration of concrete containing limestone powder exposed to sulfate solution under ambient temperature (20~25 °C). Microstructure and mineral phases within the attacked concrete were measured by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). It was found that the addition of limestone powder increased the initial porosity of concrete. Consequently, a larger amount of SO2–4 ions diffused into the concrete containing limestone powder, and their degree of deterioration caused by sulfate attack increased with the increase in limestone powder content. At ambient temperature, gypsum and ettringite were the major attack products, respectively within the surface and nearsurface portions of concrete containing limestone powder, which was consistent with the products of sulfate attack within concrete without limestone powder. Therefore, the type and distribution of the attack products in concrete had not been revised due to the addition of limestone powder. Nevertheless, the adverse influence of limestone powder on the sulfate resistance of concrete, even at ambient temperature, should be considered. Furthermore, effective measures should be implemented to improve the durability of concrete containing limestone powder in this environment.


2012 ◽  
Vol 8 ◽  
pp. 371-378 ◽  
Author(s):  
Katharina C Kress ◽  
Martin Kaller ◽  
Kirill V Axenov ◽  
Stefan Tussetschläger ◽  
Sabine Laschat

4-Cyano-1,1'-biphenyl derivatives bearing ω-hydroxyalkyl substituents were reacted with methyl 3-chloro-3-oxopropionate or cyanoacetic acid, giving liquid-crystalline linear malonates and cyanoacetates. These compounds formed monotropic nematic phases at 62 °C down to ambient temperature upon cooling from the isotropic liquid. The mesomorphic properties were investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction (WAXS).


Sign in / Sign up

Export Citation Format

Share Document