Strain Measurements at Cryogenic Temperatures

1962 ◽  
pp. 433-439 ◽  
Author(s):  
P. T. Chiarito
2009 ◽  
Vol 2009 (0) ◽  
pp. 665-666
Author(s):  
Yoshinori TSUCHIYA ◽  
Hiroshi SUZUKI ◽  
Takahiro UMENO ◽  
Syutaro MACHIYA ◽  
Kozo OSAMURA

2008 ◽  
Author(s):  
Scott Mahar ◽  
Jihong Geng ◽  
Joel Schultz ◽  
Joseph Minervini ◽  
Shibin Jiang ◽  
...  

Author(s):  
K. A. Fisher ◽  
M. G. L. Gustafsson ◽  
M. B. Shattuck ◽  
J. Clarke

The atomic force microscope (AFM) is capable of imaging electrically conductive and non-conductive surfaces at atomic resolution. When used to image biological samples, however, lateral resolution is often limited to nanometer levels, due primarily to AFM tip/sample interactions. Several approaches to immobilize and stabilize soft or flexible molecules for AFM have been examined, notably, tethering coating, and freezing. Although each approach has its advantages and disadvantages, rapid freezing techniques have the special advantage of avoiding chemical perturbation, and minimizing physical disruption of the sample. Scanning with an AFM at cryogenic temperatures has the potential to image frozen biomolecules at high resolution. We have constructed a force microscope capable of operating immersed in liquid n-pentane and have tested its performance at room temperature with carbon and metal-coated samples, and at 143° K with uncoated ferritin and purple membrane (PM).


Alloy Digest ◽  
2012 ◽  
Vol 61 (2) ◽  

Abstract SSC Invar 36 was developed for use in applications where dimensional stability is essential. It is a nickel-iron alloy with a very low coefficient of thermal expansion from cryogenic temperatures to 200 deg C (390 deg F). It is utilized in aerospace composite tooling and die applications, as well as laser components, and cryogenic components and piping: liquefied natural gas production, storage, and transportation. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as forming. Filing Code: Fe-158. Producer or source: Sandmeyer Steel Company. Originally published December 2011, revised February 2012.


Alloy Digest ◽  
1966 ◽  
Vol 15 (7) ◽  

Abstract INCONEL alloy X-750 is an age-hardenable, nickel-chromium alloy used for its corrosion and oxidation resistance and high creep rupture strength at temperature up to 1500 F. It also has excellent properties at cryogenic temperatures. It was originally developed for use in gas turbines, but because of its low cost, high strength and weldability it has become the standards choice for a wide variety of applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep and fatigue. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-115. Producer or source: Huntington Alloy Products Division, An INCO Company.


Alloy Digest ◽  
1975 ◽  
Vol 24 (2) ◽  

Abstract USS 18-8S (AISI Type 304) and USS 18-8I (AISI Type 304L) are austenitic chromium-nickel steels that are easy to fabricate and weld. They combine high strength with excellent stability and shock resistance, even at cryogenic temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on low temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-305. Producer or source: United States Steel Corporation.


2020 ◽  
Vol 96 (3s) ◽  
pp. 347-352
Author(s):  
Д.Г. Алипа ◽  
В.В. Краснов ◽  
В.М. Минненбаев ◽  
А.В. Редька ◽  
Ю.В. Федоров

В статье представлены результаты исследования возможности применения при криогенных температурах водородного уровня дискретных приборов и монолитных схем на основе нитрида галлия в составе малошумящих усилителей сантиметрового и миллиметрового диапазона длин волн для приемных устройств систем дистанционного зондирования Земли из космоса и в составе криогенных комплексов наблюдения космического пространства. The article presents the results of the research on the possibility of using discrete devices and gallium nitride monolithic circuits at the cryogenic temperatures of hydrogen level as part of low-noise amplifiers of centimeter and millimeter-wave bands used in receivers of Earth remote sensing space systems and in cryogenic systems for space observation.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2662
Author(s):  
José A. López-Pérez ◽  
Félix Tercero-Martínez ◽  
José M. Serna-Puente ◽  
Beatriz Vaquero-Jiménez ◽  
María Patino-Esteban ◽  
...  

This paper shows a simultaneous tri-band (S: 2.2–2.7 GHz, X: 7.5–9 GHz and Ka: 28–33 GHz) low-noise cryogenic receiver for geodetic Very Long Baseline Interferometry (geo-VLBI) which has been developed at Yebes Observatory laboratories in Spain. A special feature is that the whole receiver front-end is fully coolable down to cryogenic temperatures to minimize receiver noise. It was installed in the first radio telescope of the Red Atlántica de Estaciones Geodinámicas y Espaciales (RAEGE) project, which is located in Yebes Observatory, in the frame of the VLBI Global Observing System (VGOS). After this, the receiver was borrowed by the Norwegian Mapping Autorithy (NMA) for the commissioning of two VGOS radiotelescopes in Svalbard (Norway). A second identical receiver was built for the Ishioka VGOS station of the Geospatial Information Authority (GSI) of Japan, and a third one for the second RAEGE VGOS station, located in Santa María (Açores Archipelago, Portugal). The average receiver noise temperatures are 21, 23, and 25 Kelvin and the measured antenna efficiencies are 70%, 75%, and 60% in S-band, X-band, and Ka-band, respectively.


Sign in / Sign up

Export Citation Format

Share Document