Cryogenic atomic force microscopy

Author(s):  
K. A. Fisher ◽  
M. G. L. Gustafsson ◽  
M. B. Shattuck ◽  
J. Clarke

The atomic force microscope (AFM) is capable of imaging electrically conductive and non-conductive surfaces at atomic resolution. When used to image biological samples, however, lateral resolution is often limited to nanometer levels, due primarily to AFM tip/sample interactions. Several approaches to immobilize and stabilize soft or flexible molecules for AFM have been examined, notably, tethering coating, and freezing. Although each approach has its advantages and disadvantages, rapid freezing techniques have the special advantage of avoiding chemical perturbation, and minimizing physical disruption of the sample. Scanning with an AFM at cryogenic temperatures has the potential to image frozen biomolecules at high resolution. We have constructed a force microscope capable of operating immersed in liquid n-pentane and have tested its performance at room temperature with carbon and metal-coated samples, and at 143° K with uncoated ferritin and purple membrane (PM).

Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 515
Author(s):  
Andrea Cugno ◽  
Alex Marki ◽  
Klaus Ley

Leukocytes, including neutrophils, which are propelled by blood flow, can roll on inflamed endothelium using transient bonds between selectins and their ligands, and integrins and their ligands. When such receptor–ligand bonds last long enough, the leukocyte microvilli become extended and eventually form thin, 20 m long tethers. Tether formation can be observed in blood vessels in vivo and in microfluidic flow chambers. Tethers can also be extracted using micropipette aspiration, biomembrane force probe, optical trap, or atomic force microscopy approaches. Here, we review the biomechanical properties of leukocyte tethers as gleaned from such measurements and discuss the advantages and disadvantages of each approach. We also review and discuss viscoelastic models that describe the dependence of tether formation on time, force, rate of loading, and cell activation. We close by emphasizing the need to combine experimental observations with quantitative models and computer simulations to understand how tether formation is affected by membrane tension, membrane reservoir, and interactions of the membrane with the cytoskeleton.


2021 ◽  
Vol 50 (2) ◽  
pp. 223-237 ◽  
Author(s):  
Hannes Witt ◽  
Filip Savić ◽  
Sarah Verbeek ◽  
Jörn Dietz ◽  
Gesa Tarantola ◽  
...  

AbstractMembrane-coated colloidal probes combine the benefits of solid-supported membranes with a more complex three-dimensional geometry. This combination makes them a powerful model system that enables the visualization of dynamic biological processes with high throughput and minimal reliance on fluorescent labels. Here, we want to review recent applications of colloidal probes for the study of membrane fusion. After discussing the advantages and disadvantages of some classical vesicle-based fusion assays, we introduce an assay using optical detection of fusion between membrane-coated glass microspheres in a quasi two-dimensional assembly. Then, we discuss free energy considerations of membrane fusion between supported bilayers, and show how colloidal probes can be combined with atomic force microscopy or optical tweezers to access the fusion process with even greater detail.


2010 ◽  
Vol 663-665 ◽  
pp. 324-327
Author(s):  
Chao Song ◽  
Rui Huang

The germanium film and Ge/Si multilayer structure were fabricated by magnetron sputtering technique on silicon substrate at temperatures of 500°C. Raman scattering spectroscopy measurements reveal that the nanocrystalline Ge occurs in both kinds of samples. Furthermore, from the atomic force microscopy (AFM) results, it is found that the grain size as well as spatially ordering distribution of the nc-Ge can be modulated by the Ge/Si multilayer structure. The room temperature photoluminescence was also observed in the samples. However, compared with that from the nc-Ge film, the intensity of PL from the nc-Ge/a-Si multilayer film becomes weaker, which is attributed to its lower volume fraction of crystallized component.


Author(s):  
Lin Zhang ◽  
Bai An ◽  
Takashi Iijima ◽  
Chris San Marchi ◽  
Brian Somerday

The behaviors of hydrogen transport and hydrogen-assisted cracking in hydrogen-precharged SUS304 austenitic stainless steel sheets in a temperature range from 177 to 298 K are investigated by a combined tensile and hydrogen release experiment as well as magnetic force microscopy (MFM) based on atomic force microscopy (AFM). It is observed that the hydrogen embrittlement increases with decreasing temperature, reaches a maximum at around 218 K, and then decreases with further temperature decrease. The hydrogen release rate increases with increasing strain until fracture at room temperature but remains near zero level at and below 218 K except for some small distinct release peaks. The MFM observations reveal that fracture occurs at phase boundaries along slip planes at room temperature and twin boundaries at 218 K. The role of strain-induced martensite in the hydrogen transport and hydrogen embrittlement is discussed.


2006 ◽  
Vol 20 (02) ◽  
pp. 217-231 ◽  
Author(s):  
MUHAMMAD MAQBOOL ◽  
TAHIRZEB KHAN

Thin films of pure silver were deposited on glass substrate by thermal evaporation process at room temperature. Surface characterization of the films was performed using X-ray diffraction (XRD) and atomic force microscopy (AFM). Thickness of the films varied between 20 nm and 72.8 nm. XRD analysis provided a sharp peak at 38.75° from silver. These results indicated that the films deposited on glass substrates at room temperature are crystalline. Three-dimension and top view pictures of the films were obtained by AFM to study the grain size and its dependency on various factors. Average grain size increased with the thickness of the deposited films. A minimum grain size of 8 nm was obtained for 20 nm thick films, reaching 41.9 nm when the film size reaches 60 nm. Grain size was calculated from the information provided by the XRD spectrum and averaging method. We could not find any sequential variation in the grain size with the growth rate.


1998 ◽  
Vol 05 (01) ◽  
pp. 387-392 ◽  
Author(s):  
D. Abriou ◽  
D. Gagnot ◽  
J. Jupille ◽  
F. Creuzet

The growth mode of silver films deposited at room temperature on TiO 2(110) surfaces has been examined by means of atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) in ultrahigh vacuum (UHV) conditions, On clean vacancy-free TiO 2(110) surfaces, 0.1-nm-thick (on average) Ag deposits form a two-dimensional (2D) layer. When the thickness of the silver overlayer is increased, 3D clusters are shown to appear while the 2D film is preserved, furthermore, the influence of surface oxygen vacancies on the growth of Ag/TiO 2(110) is evidenced by well-characterized differences in the morphology of 9-nm-thick silver deposits.


1995 ◽  
Vol 10 (9) ◽  
pp. 2159-2161 ◽  
Author(s):  
J.H. Schneibel ◽  
L. Martínez

Fe–40 at. % Al–0.1 at. % B specimens were polished flat, strained at room temperature, and examined in an atomic force microscope. The angles of height contours perpendicular to the slip lines were interpreted as shear strains and were statistically evaluated. The frequency distributions of these shear strains correlated well with the macroscopic strains. The maximum shear strains found were not much larger than the macroscopic strains. In particular, no steep slip steps corresponding to large local shears were found.


Sign in / Sign up

Export Citation Format

Share Document