Mechanical Properties of High-Strength 301 Stainless Steel Sheet at 70, -320, and -423°F in the Base Metal and Welded Joint Configurations

1960 ◽  
pp. 406-420
Author(s):  
J. F. Watson
2004 ◽  
Vol 467-470 ◽  
pp. 317-322 ◽  
Author(s):  
Chad W. Sinclair ◽  
J.D. Mithieux

Obtaining optimal mechanical properties for highly formable ferritic stainless steel sheet requires careful control over recrystallization and texture. This is, in some cases, hampered by the slow approach to final recrystallization associated with the disappearance of deformed grains with particular orientations. The important mechanical properties for formability (e.g. the yield strength and r-value) are thus strongly dependent on the final few percent recrystallization. In this study, it has been attempted to correlate the microstructure and texture of ferritic stainless steel sheet to its mechanical properties as measured in uniaxial tension. It is shown that careful consideration of the evolution of texture and microstructure with recrystallization may explain the observed trends.


Author(s):  
Wesley A. Salandro ◽  
Cristina Bunget ◽  
Laine Mears

Automotive manufacturers are continuously striving to meet economic demands by designing and manufacturing more efficient and better performing vehicles. To aid this effort, many manufacturers are using different design strategies such to reduce the overall size/weight of certain automotive components without compromising strength or durability. Stainless steel is a popular material for such uses (i.e. bumpers and fuel tanks) since it possesses both high strength and ductility, and it is relatively light for its strength. However, with current forming processes (e.g., hot working, incremental forming, and superplastic forming), extremely complex components cannot always be easily produced, thus, limiting the potential weight-saving and performance benefits that could be achieved otherwise. Electrically-Assisted Manufacturing (EAM) is an emerging manufacturing technique that has been proven capable of significantly increasing the formability of many automotive alloys, hence the “electroplastic effect”. In this technique, electricity can be applied in many ways (e.g., pulsed, cycled, or continuous) to metals undergoing different types of deformation (e.g., compression, tension, bending). When applied, the electricity lowers the required deformation forces, increases part displacement or elongation, and can reduce or eliminate springback in formed parts. Within this study, the effects of EAM on the bending of 304 Stainless Steel sheet metal will be characterized and modeled for different die widths and electrical flux densities. In previous works, EAM has proven to be highly successful on this particular material. Comparison of 3-point bending force profiles for non-electrical baseline tests and various EAM tests will help to illustrate electricity’s effectiveness. An electroplastic bending coefficient will be introduced and used for modeling an electrically-assisted bending process. Additionally, the springback reductions attained from EAM will be quantified and compared. From this work, a better overall understanding of the effects and benefits of EAM on bending processes will be explained.


2011 ◽  
Vol 391-392 ◽  
pp. 763-767
Author(s):  
Li Yang ◽  
Na Zhang

On the basis of the analysis of composition, microstructure, properties and weldability of 2205 duplex stainless steel, the flux cored arc welding (FCAW) process is made. Then the microstructure, mechanical properties and corrosion resistance of welded joint were analyzed. The results shows using FCAW process, in order to obtain high strength, perfect impact toughness and overall and partial resistance to stress corrosion in welded joint, the Ni content of duplex stainless steel welding material should be 2% to 4% higher than that of base metal, multi-layer and multi-channel welding is adopted with the strict control of energy input less than or equal to 0.926KJ/mm, layer temperature is less than 120 °C, thus the appropriate proportion of two-phase structure in the welded joint can be got. Using a reasonable welding procedure, the microstructure in weld beam is austenite (A) + ferrite (F), and in heat affected zone is ferrite (F) + austenite (A) + a small amount of third phase, the content of austenite in weld beam and heat affected zone is higher than that of the base metal. Tensile strength of the welded joint is up to 854.5MPa and the fracture occurs in the base metal and the heat affected zone. The welded joint has high strength, good plasticity, toughness and corrosion resistance.


Materia Japan ◽  
2018 ◽  
Vol 57 (1) ◽  
pp. 20-22 ◽  
Author(s):  
Yuta Matsumura ◽  
Kyohei Ogawa ◽  
Yoshihiro Hosoya ◽  
Shinichi Tanaka ◽  
Masato Shimasaki ◽  
...  

2010 ◽  
Vol 97-101 ◽  
pp. 3957-3962
Author(s):  
Lian Hai Hu ◽  
Qi Yan ◽  
Jian Huang ◽  
Yi Xiong Wu

Reducing car’s weight has become an important goal for automobile industry. Laser welding of automotive high-strength steel plays a significant role in producing light weight cars. Experiments of CO2 high power laser welding of 1000MPa grade complex phase steels with a thickness of 3mm for automobile were performed using a 15 KW CO2 laser. The macrostructure and microstructure of the welded joint were examined by optical microscope. Mechanical properties of the welded joint, fusion zone and base metal were assessed by microhardness distribution across the welded joint, uniaxial tensile test and charpy V-notch impact test. Fractographs of the impact specimens were studied by scanning electron microscopy (SEM). It is found that the fusion zone has a higher toughness than that of the base metal and fusion line. The test results show good mechanical properties of laser welds that can meet the technical requirements for automobile Industry.


Sign in / Sign up

Export Citation Format

Share Document