Evidence for the Role of Immobilization of Ligand-Occupied Membrane Receptors in Signal Transduction

Author(s):  
David A. Jans
2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 644
Author(s):  
Agata M. Parsons ◽  
Gerrit J. Bouma

Successful pregnancy requires the establishment of a highly regulated maternal–fetal environment. This is achieved through the harmonious regulation of steroid hormones, which modulate both maternal and fetal physiology, and are critical for pregnancy maintenance. Defects in steroidogenesis and steroid signaling can lead to pregnancy disorders or even fetal loss. The placenta is a multifunctional, transitory organ which develops at the maternal–fetal interface, and supports fetal development through endocrine signaling, the transport of nutrients and gas exchange. The placenta has the ability to adapt to adverse environments, including hormonal variations, trying to support fetal development. However, if placental function is impaired, or its capacity to adapt is exceeded, fetal development will be compromised. The goal of this review is to explore the relevance of androgens and androgen signaling during pregnancy, specifically in placental development and function. Often considered a mere precursor to placental estrogen synthesis, the placenta in fact secretes androgens throughout pregnancy, and not only contains the androgen steroid nuclear receptor, but also non-genomic membrane receptors for androgens, suggesting a role of androgen signaling in placental function. Moreover, a number of pregnancy disorders, including pre-eclampsia, gestational diabetes, intrauterine growth restriction, and polycystic ovarian syndrome, are associated with abnormal androgen levels and androgen signaling. Understanding the role of androgens in the placenta will provide a greater understanding of the pathophysiology of pregnancy disorders associated with androgen elevation and its consequences.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 525
Author(s):  
Valentina Lodde ◽  
Piero Morandini ◽  
Alex Costa ◽  
Irene Murgia ◽  
Ignacio Ezquer

This review explores the role of reactive oxygen species (ROS)/Ca2+ in communication within reproductive structures in plants and animals. Many concepts have been described during the last years regarding how biosynthesis, generation products, antioxidant systems, and signal transduction involve ROS signaling, as well as its possible link with developmental processes and response to biotic and abiotic stresses. In this review, we first addressed classic key concepts in ROS and Ca2+ signaling in plants, both at the subcellular, cellular, and organ level. In the plant science field, during the last decades, new techniques have facilitated the in vivo monitoring of ROS signaling cascades. We will describe these powerful techniques in plants and compare them to those existing in animals. Development of new analytical techniques will facilitate the understanding of ROS signaling and their signal transduction pathways in plants and mammals. Many among those signaling pathways already have been studied in animals; therefore, a specific effort should be made to integrate this knowledge into plant biology. We here discuss examples of how changes in the ROS and Ca2+ signaling pathways can affect differentiation processes in plants, focusing specifically on reproductive processes where the ROS and Ca2+ signaling pathways influence the gametophyte functioning, sexual reproduction, and embryo formation in plants and animals. The study field regarding the role of ROS and Ca2+ in signal transduction is evolving continuously, which is why we reviewed the recent literature and propose here the potential targets affecting ROS in reproductive processes. We discuss the opportunities to integrate comparative developmental studies and experimental approaches into studies on the role of ROS/ Ca2+ in both plant and animal developmental biology studies, to further elucidate these crucial signaling pathways.


1999 ◽  
Vol 4 (6) ◽  
pp. 363-373 ◽  
Author(s):  
Shiho Tsujino ◽  
Tadaaki Miyazaki ◽  
Atsuo Kawahara ◽  
Michiyuki Maeda ◽  
Tadatsugu Taniguchi ◽  
...  

1992 ◽  
Vol 76 (4) ◽  
pp. 635-639 ◽  
Author(s):  
Shigeru Nishizawa ◽  
Nobukazu Nezu ◽  
Kenichi Uemura

✓ Vascular contraction is induced by the activation of intracellular contractile proteins mediated through signal transduction from the outside to the inside of cells. Protein kinase C plays a crucial role in this signal transduction. It is hypothesized that protein kinase C plays a causative part in the development of vasospasm after subarachnoid hemorrhage (SAH). To verify this directly, the authors measured protein kinase C activity in canine basilar arteries in an SAH model with (γ-32P)adenosine triphosphate and the data were compared to those in a control group. Protein kinase C is translocated to the membrane from the cytosol when it is activated, and the translocation is an index of the activation; thus, protein kinase C activity was measured both in the cytosol and in the membrane fractions. Protein kinase C activity in the membrane in the SAH model was remarkably enhanced compared to that in the control group. The percentage of membrane activity to the total was also significantly greater in the SAH vessels than in the control group, and the percentage of cytosol activity in the SAH group was decreased compared to that in the control arteries. The results indicate that protein kinase C in the vascular smooth muscle was translocated to the membrane from the cytosol and was activated when SAH occurred. It is concluded that this is direct evidence for a key role of protein kinase C in the development of vasospasm.


Sign in / Sign up

Export Citation Format

Share Document