Relationships Among Individual Plant Growth and the Dynamics of Populations and Ecosystems

Author(s):  
James S. Clark
2004 ◽  
Vol 18 (3) ◽  
pp. 605-610 ◽  
Author(s):  
Diego J. Bentivegna ◽  
Osvaldo A. Fernández ◽  
María A. Burgos

Chemical weed control with acrolein has been shown to be a lower cost method for reducing submerged plant biomass of sago pondweed in the irrigation district of the Lower Valley of Rio Colorado, Argentina (39°10′S–62°05′W). However, no experimental data exist on the effects of the herbicide on plant growth and its survival structures. Field experiments were conducted during 3 yr to evaluate the effect of acrolein on growth and biomass of sago pondweed and on the source of underground propagules (i.e., rhizomes, tubers, and seeds). Plant biomass samples were collected in irrigation channels before and after several herbicide treatments. The underground propagule bank was evaluated at the end of the third year. Within each treatment, plant biomass was significantly reduced by 40 to 60% in all three study years. Rapid new plant growth occurred after each application; however, it was less vigorous after repeated treatments. At the end of the third year at 3,000 m downstream from the application point, plant biomass at both channels ranged from 34 to 3% of control values. Individual plant weight and height were affected by acrolein treatments, flowering was poor, and seeds did not reach maturity. After 3 yr, acrolein did not reduce the number of tubers. However, they were significantly smaller and lighter. Rhizomes fresh weight decreased by 92%, and seed numbers decreased by 79%. After 3 yr of applications, operational functioning of the channels could be maintained with fewer treatments and lower concentrations of acrolein.


1979 ◽  
Vol 30 (6) ◽  
pp. 1079
Author(s):  
KC Reynolds ◽  
RD Lang

Stabilization by vegetation of dispersible subsoil batters which cannot be adequately topsoiled has generally proven unsuccessful. Straw and bitumen mulches were used alone and combined to aid the establishment of pasture grasses and legumes on batters composed of dispersible subsoil, which were covered with either 5 cm or 10 cm of topsoil, or were not topsoiled. The mulches consistently increased plant density, vegetative ground cover, and plant production. However, percentage ground cover at the end of the first season was only 10–26%, unless 10 cm of topsoil was added first. With 10 cm of topsoil, the only treatments to provide sufficient ground cover to control erosion after a year's growth were bitumen–straw and straw. Cover was determined by individual plant growth rather than plant density. Field implications are discussed.


HortScience ◽  
1997 ◽  
Vol 32 (6) ◽  
pp. 981b-981
Author(s):  
M.S. Albahou ◽  
J.L. Green

It has been shown that container medium volume affects plant growth and development in conventional production methods. The objective of this study was to investigate the effect of media volume on the growth and yield of the determinate tomato genotype `Pik Red' in the closed, insulated pallet system (CIPS). The CIPS contains media pouches with wicks extended down into a water reservoir. Three root media volumes were investigated: 3, 6, and 9 L (3L, 6L, and 9L). The root media were placed in pouches that varied in diameter but had constant depth. The surface area of the wicks in contact with the bottom of all pouch sizes remained constant at 110 cm2. It was hypothesized that increasing the volume of root media would allow sufficient water replenishment during the dark period to meet the plant's need the next day, and thus allow greater growth and fruit yield. Daily water uptake for each individual plant was measured by the principle of atmospheric pressure and water replacement technique. Media volume had no significant effect on water uptake during early stage of plant growth. After 45 days after planting (DAP), water uptake and plant growth were less in 3L media volume. Water uptake was similar in the 6L and 9L treatments between 45–60 DAP. Total water uptake from day 60 to 125 was greatest in the 9L, intermediate for 6L, and least in the 3L treatments. The water uptake from 1–60 DAP was reflected in the fresh shoot weight, and the water uptake was reflected in the fruit weight. Average fruit sizes and the total fruit weights for the 3L were 67.7% and 60.4% those of the 9L treatment, respectively. The 6L treatment fruit yield and fruit size were intermediate between the 3L and 9L.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 281 ◽  
Author(s):  
Ryan J. Emenecker ◽  
Lucia C. Strader

Plant hormones regulate many aspects of plant growth, development, and response to biotic and abiotic stress. Much research has gone into our understanding of individual plant hormones, focusing primarily on their mechanisms of action and the processes that they regulate. However, recent research has begun to focus on a more complex problem; how various plant hormones work together to regulate growth and developmental processes. In this review, we focus on two phytohormones, abscisic acid (ABA) and auxin. We begin with brief overviews of the hormones individually, followed by in depth analyses of interactions between auxin and ABA, focusing on interactions in individual tissues and how these interactions are occurring where possible. Finally, we end with a brief discussion and future prospects for the field.


Sign in / Sign up

Export Citation Format

Share Document