Serum Virus Neutralization Assay for Detection and Quantitation of Serum-Neutralizing Antibodies to Influenza A Virus in Swine

Author(s):  
Phillip C. Gauger ◽  
Amy L. Vincent
2020 ◽  
Author(s):  
Arantxa Valdivia ◽  
Ignacio Torres ◽  
Victor Latorre ◽  
Carla Frances-Gomez ◽  
Eliseo Albert ◽  
...  

Background: Whether antibody levels measured by commercially-available enzyme or chemiluminescent immunoassays targeting the SARS-CoV-2 spike (S) protein can act as a proxy for serum neutralizing activity remains to be established for many of these assays. Objectives: To evaluate the degree of correlation between neutralizing antibodies (NtAb) binding the SARS-CoV-2 Spike (S) protein and SARS-CoV-2-S-IgG levels measured by four commercial immunoassays in sera drawn from hospitalized COVID-19 patients. Patients and Methods: Ninety sera from 51 hospitalized COVID-19 patients were assayed by a pseudotyped virus neutralization assay, the LIAISON SARS-CoV-2 S1/S2 IgG, the Euroimmun SARS-CoV-2 IgG ELISA, the MAGLUMI 2019-nCoV IgG and the COVID-19 ELISA IgG assays. Results: Overall, the results obtained with the COVID-19 ELISA IgG test showed the highest agreement with the NtAb assay (κ, 0.85; 95% CI, 0.63-1). The most sensitive tests were the pseudotyped virus NtAb assay and the COVID-19 ELISA IgG assay (92.2% for both). Overall, the degree correlation between antibody titers resulting in 50% virus neutralization (NtAb50) in the pseudotyped virus assay and SARS-CoV-2 IgG levels was strong for the Euroimmun SARS-CoV-2 IgG ELISA (Rho=0.73) and moderate for the remaining assays (Rho=0.48 to 0.59). The kinetic profile of serum NtAb50 titers could not be reliably predicted by any of the SARS-CoV-2 IgG immunoassays. Conclusions: the suitability of SARS-CoV-2-S-IgG commercial immunoassays for inferring neutralizing activity of sera from hospitalized COVID-19 patients varies widely across tests and is influenced by the time of sera collection after the onset of symptoms.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1191
Author(s):  
Christin Schmidt ◽  
Mario Perkovic ◽  
Barbara S. Schnierle

Alphaviruses have a single-stranded, positive-sense RNA genome that contains two open reading frames encoding either the non-structural or the structural genes. Upon infection, the genomic RNA is translated into the non-structural proteins (nsPs). NsPs are required for viral RNA replication and transcription driven from the subgenomic promoter (sgP). Transfection of an RNA encoding the luciferase gene under the control of the sgP into cells enabled the detection of replication-competent chikungunya virus (CHIKV) or Mayaro virus (MAYV) with high sensitivity as a function of the induced luciferase activity. This assay principle was additionally used to analyze virus-neutralizing antibodies in sera and might be an alternative to standard virus neutralization assays based on virus titration or the use of genetically modified tagged viruses.


Author(s):  
Kasopefoluwa Y. Oguntuyo ◽  
Christian S Stevens ◽  
Chuan-Tien Hung ◽  
Satoshi Ikegame ◽  
Joshua A. Acklin ◽  
...  

The global COVID-19 pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the SARS-CoV-2 spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous BSL3 conditions which limits high throughput screening of patient and vaccine sera. Myriad BSL-2 compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making inter-group comparisons difficult. To address these limitations, we developed a standardized VNA using VSVdeltaG-based CoV-2-S pseudotyped particles (CoV2pp) that can be robustly produced at scale and generate accurate neutralizing titers within 18 hours post-infection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S ELISA and live virus neutralizations in confirmed convalescent patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n>120). Our data show that absolute (abs) IC50, IC80, and IC90 values can be legitimately compared across diverse cohorts, highlight the substantial but consistent variability in neutralization potency across these cohorts, and support the use of absIC80 as a more meaningful metric for assessing the neutralization potency of vaccine or convalescent sera. Lastly, we used our CoV2pp in a screen to identify ultra-permissive 293T clones that stably express ACE2 or ACE2+TMPRSS2. When used in combination with our CoV2pp, we can now produce CoV2pp sufficient for 150,000 standardized VNA/week.


2019 ◽  
Author(s):  
Trung Tuan Vu ◽  
Hannah Clapham ◽  
Van Thi Thuy Huynh ◽  
Long Vo Thi ◽  
Dui Le Thi ◽  
...  

AbstractBackgroundDengue is the most prevalent arboviral disease, for which neither effective vaccines nor antivirals are available. Clinical trials with Dengvaxia, the first licensed dengue vaccine, show the conventional in vitro plaque reduction neutralization test (PRNT) failed to discriminate between neutralizing and non-neutralizing antibodies. A number of human monoclonal antibodies (mAbs) were characterized by PRNT as being neutralizers of virus infectivity for mammalian cells.Methodolody/Principle findingsWe developed a neutralization assay and tested the capacity of 12 mAbs to neutralize the infectiousness of dengue patient viremic blood in mosquitoes. We identified minimum concentrations of a subset of mAbs required to achieve dengue virus neutralization, and modelled the impact of a therapeutic mAb candidate on viremia.Five of the 12 mAbs (14c10, 2D22, 1L12, 747(4)B7, 753(3)C10), all of which target quaternary epitopes, potently inhibited dengue virus infection of Ae. aegypti. The potency of several mAbs was compromised in the context of patients with secondary serological profiles, possibly reflecting competition between the exogenously-added mAbs and the patient’s own antibody responses at or near the target epitopes. The minimum concentrations that mAbs neutralized DENV ranged from 0.1 – 5 µg/mL. An Fc-disabled variant of mAb (14c10-LALA) was as potent as its parent mAb. Within-host mathematical modelling suggests infusion of 14c10-LALA could bring about rapid acceleration of viremia resolution in a typical patient.Conclusions/SignificanceThese data delivered a unique assessment of anti-viral potency of a panel of human mAbs. Results support the advancement of dengue virus neutralization assays, and the development of therapeutics against flaviviruses, to which dengue virus and Zika virus belong.Author summaryDengue is the most prevalent arboviral disease affecting humans. There are no therapeutics for the disease. Antibody-mediated immunity against dengue is also not well-understood, as shown by the failure of the conventional neutralization assay used to predict the efficacy of Dengvaxia, the first licensed vaccine for the disease. It is likely that the neutralization assay targets non-neutralizing antibodies, but there are no validation assays available. To this end, we developed a novel virus neutralization assay, employing Aedes aegypti mosquitoes and viremic blood from dengue patients, to examine the virus-neutralizing potency of 12 human-derived monoclonal antibodies (mAbs). While all of these mAbs neutralized dengue virus using the conventional assay, seven of them failed to block dengue virus infections of mosquitoes using our assay. The remaining five mAbs neutralized at least one serotype of dengue virus and the minimum neutralizing concentrations of range from 0.1 – 5 µg/mL. Using the minimum neutralizing concentration of a therapeutic mAb candidate, we investigated the impact of the mAb on viremia using a mathematical model and found the mAb accelerated the reduction of viremia. The results support the advancement of dengue virus neutralization assays, and the development of therapeutics for dengue.


2016 ◽  
Vol 113 (42) ◽  
pp. 11931-11936 ◽  
Author(s):  
Wenqian He ◽  
Gene S. Tan ◽  
Caitlin E. Mullarkey ◽  
Amanda J. Lee ◽  
Mannie Man Wai Lam ◽  
...  

The generation of strain-specific neutralizing antibodies against influenza A virus is known to confer potent protection against homologous infections. The majority of these antibodies bind to the hemagglutinin (HA) head domain and function by blocking the receptor binding site, preventing infection of host cells. Recently, elicitation of broadly neutralizing antibodies which target the conserved HA stalk domain has become a promising “universal” influenza virus vaccine strategy. The ability of these antibodies to elicit Fc-dependent effector functions has emerged as an important mechanism through which protection is achieved in vivo. However, the way in which Fc-dependent effector functions are regulated by polyclonal influenza virus-binding antibody mixtures in vivo has never been defined. Here, we demonstrate that interactions among viral glycoprotein-binding antibodies of varying specificities regulate the magnitude of antibody-dependent cell-mediated cytotoxicity induction. We show that the mechanism responsible for this phenotype relies upon competition for binding to HA on the surface of infected cells and virus particles. Nonneutralizing antibodies were poor inducers and did not inhibit antibody-dependent cell-mediated cytotoxicity. Interestingly, anti-neuraminidase antibodies weakly induced antibody-dependent cell-mediated cytotoxicity and enhanced induction in the presence of HA stalk-binding antibodies in an additive manner. Our data demonstrate that antibody specificity plays an important role in the regulation of ADCC, and that cross-talk among antibodies of varying specificities determines the magnitude of Fc receptor-mediated effector functions.


2008 ◽  
Vol 83 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Zhongying Chen ◽  
Celia Santos ◽  
Amy Aspelund ◽  
Laura Gillim-Ross ◽  
Hong Jin ◽  
...  

ABSTRACT Avian influenza A virus A/teal/HK/W312/97 (H6N1) possesses seven gene segments that are highly homologous to those of highly pathogenic human influenza H5N1 viruses, suggesting that a W312-like H6N1 virus might have been involved in the generation of the A/HK/97 H5N1 viruses. The continuous circulation and reassortment of influenza H6 subtype viruses in birds highlight the need to develop an H6 vaccine to prevent potential influenza pandemics caused by the H6 viruses. Based on the serum antibody cross-reactivity data obtained from 14 different H6 viruses from Eurasian and North American lineages, A/duck/HK/182/77, A/teal/HK/W312/97, and A/mallard/Alberta/89/85 were selected to produce live attenuated H6 candidate vaccines. Each of the H6 vaccine strains is a 6:2 reassortant ca virus containing HA and NA gene segments from an H6 virus and the six internal gene segments from cold-adapted A/Ann Arbor/6/60 (AA ca), the master donor virus that is used to make live attenuated influenza virus FluMist (intranasal) vaccine. All three H6 vaccine candidates exhibited phenotypic properties of temperature sensitivity (ts), ca, and attenuation (att) conferred by the internal gene segments from AA ca. Intranasal administration of a single dose of the three H6 ca vaccine viruses induced neutralizing antibodies in mice and ferrets and fully protected mice and ferrets from homologous wild-type (wt) virus challenge. Among the three H6 vaccine candidates, the A/teal/HK/W312/97 ca virus provided the broadest cross-protection against challenge with three antigenically distinct H6 wt viruses. These data support the rationale for further evaluating the A/teal/HK/W312/97 ca vaccine in humans.


Sign in / Sign up

Export Citation Format

Share Document