scholarly journals Inference of SARS-CoV-2 spike-binding neutralizing antibody titers in sera from hospitalized COVID-19 patients by using commercial enzyme and chemiluminescent immunoassays

Author(s):  
Arantxa Valdivia ◽  
Ignacio Torres ◽  
Victor Latorre ◽  
Carla Frances-Gomez ◽  
Eliseo Albert ◽  
...  

Background: Whether antibody levels measured by commercially-available enzyme or chemiluminescent immunoassays targeting the SARS-CoV-2 spike (S) protein can act as a proxy for serum neutralizing activity remains to be established for many of these assays. Objectives: To evaluate the degree of correlation between neutralizing antibodies (NtAb) binding the SARS-CoV-2 Spike (S) protein and SARS-CoV-2-S-IgG levels measured by four commercial immunoassays in sera drawn from hospitalized COVID-19 patients. Patients and Methods: Ninety sera from 51 hospitalized COVID-19 patients were assayed by a pseudotyped virus neutralization assay, the LIAISON SARS-CoV-2 S1/S2 IgG, the Euroimmun SARS-CoV-2 IgG ELISA, the MAGLUMI 2019-nCoV IgG and the COVID-19 ELISA IgG assays. Results: Overall, the results obtained with the COVID-19 ELISA IgG test showed the highest agreement with the NtAb assay (κ, 0.85; 95% CI, 0.63-1). The most sensitive tests were the pseudotyped virus NtAb assay and the COVID-19 ELISA IgG assay (92.2% for both). Overall, the degree correlation between antibody titers resulting in 50% virus neutralization (NtAb50) in the pseudotyped virus assay and SARS-CoV-2 IgG levels was strong for the Euroimmun SARS-CoV-2 IgG ELISA (Rho=0.73) and moderate for the remaining assays (Rho=0.48 to 0.59). The kinetic profile of serum NtAb50 titers could not be reliably predicted by any of the SARS-CoV-2 IgG immunoassays. Conclusions: the suitability of SARS-CoV-2-S-IgG commercial immunoassays for inferring neutralizing activity of sera from hospitalized COVID-19 patients varies widely across tests and is influenced by the time of sera collection after the onset of symptoms.

2021 ◽  
Author(s):  
Daniel J. Sheward ◽  
Changil Kim ◽  
Roy A. Ehling ◽  
Alec Pankow ◽  
Xaquin Castro Dopico ◽  
...  

The recently-emerged SARS-CoV-2 B.1.1.529 variant (Omicron) is spreading rapidly in many countries, with a spike that is highly diverged from the pandemic founder, raising fears that it may evade neutralizing antibody responses. We cloned the Omicron spike from a diagnostic sample which allowed us to rapidly establish an Omicron pseudotyped virus neutralization assay, sharing initial neutralization results only 13 days after the variant was first reported to the WHO, 8 days after receiving the sample. Here we show that Omicron is substantially resistant to neutralization by several monoclonal antibodies that form part of clinical cocktails. Further, we find neutralizing antibody responses in pooled reference sera sampled shortly after infection or vaccination are substantially less potent against Omicron, with neutralizing antibody titers reduced by up to 45 fold compared to those for the pandemic founder. Similarly, in a cohort of convalescent sera prior to vaccination, neutralization of Omicron was low to undetectable. However, in recent samples from two cohorts from Stockholm, Sweden, antibody responses capable of cross-neutralizing Omicron were prevalent. Sera from infected-then-vaccinated healthcare workers exhibited robust cross-neutralization of Omicron, with an average potency reduction of only 5-fold relative to the pandemic founder variant, and some donors showing no loss at all. A similar pattern was observed in randomly sampled recent blood donors, with an average 7-fold loss of potency. Both cohorts showed substantial between-donor heterogeneity in their ability to neutralize Omicron. Together, these data highlight the extensive but incomplete evasion of neutralizing antibody responses by the Omicron variant, and suggest that increasing the magnitude of neutralizing antibody responses by boosting with unmodified vaccines may suffice to raise titers to levels that are protective.


2021 ◽  
Author(s):  
Venkata-Viswanadh Edara ◽  
Kelly E Manning ◽  
Madison Ellis ◽  
Lilin Lai ◽  
Kathryn M Moore ◽  
...  

The BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines generate potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the global emergence of SARS-CoV-2 variants with mutations in the spike protein, the principal antigenic target of these vaccines, has raised concerns over the neutralizing activity of vaccine-induced antibody responses. The Omicron variant, which emerged in November 2021, consists of over 30 mutations within the spike protein. Here, we used an authentic live virus neutralization assay to examine the neutralizing activity of the SARS-CoV-2 Omicron variant against mRNA vaccine-induced antibody responses. Following the 2nd dose, we observed a 30-fold reduction in neutralizing activity against the omicron variant. Through six months after the 2nd dose, none of the sera from naive vaccinated subjects showed neutralizing activity against the Omicron variant. In contrast, recovered vaccinated individuals showed a 22-fold reduction with more than half of the subjects retaining neutralizing antibody responses. Following a booster shot (3rd dose), we observed a 14-fold reduction in neutralizing activity against the omicron variant and over 90% of boosted subjects showed neutralizing activity against the omicron variant. These findings show that a 3rd dose is required to provide robust neutralizing antibody responses against the Omicron variant.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 284
Author(s):  
Hulda R. Jonsdottir ◽  
Michel Bielecki ◽  
Denise Siegrist ◽  
Thomas W. Buehrer ◽  
Roland Züst ◽  
...  

Neutralizing antibodies are an important part of the humoral immune response to SARS-CoV-2. It is currently unclear to what extent such antibodies are produced after non-severe disease or asymptomatic infection. We studied a cluster of SARS-CoV-2 infections among a homogeneous population of 332 predominantly male Swiss soldiers and determined the neutralizing antibody response with a serum neutralization assay using a recombinant SARS-CoV-2-GFP. All patients with non-severe COVID-19 showed a swift humoral response within two weeks after the onset of symptoms, which remained stable for the duration of the study. One month after the outbreak, titers in COVID-19 convalescents did not differ from the titers of asymptomatically infected individuals. Furthermore, symptoms of COVID-19 did not correlate with neutralizing antibody titers. Therefore, we conclude that asymptomatic infection can induce the same humoral immunity as non-severe COVID-19 in young adults.


2009 ◽  
Vol 16 (8) ◽  
pp. 1105-1112 ◽  
Author(s):  
Richard Kennedy ◽  
V. Shane Pankratz ◽  
Eric Swanson ◽  
David Watson ◽  
Hana Golding ◽  
...  

ABSTRACT Because of the bioterrorism threat posed by agents such as variola virus, considerable time, resources, and effort have been devoted to biodefense preparation. One avenue of this research has been the development of rapid, sensitive, high-throughput assays to validate immune responses to poxviruses. Here we describe the adaptation of a β-galactosidase reporter-based vaccinia virus neutralization assay to large-scale use in a study that included over 1,000 subjects. We also describe the statistical methods involved in analyzing the large quantity of data generated. The assay and its associated methods should prove useful tools in monitoring immune responses to next-generation smallpox vaccines, studying poxvirus immunity, and evaluating therapeutic agents such as vaccinia virus immune globulin.


2020 ◽  
Author(s):  
Antonin Bal ◽  
Bruno Pozzetto ◽  
Mary-Anne Trabaud ◽  
Vanessa Escuret ◽  
Muriel Rabilloud ◽  
...  

BackgroundThe association between SARS-CoV-2 commercial serological assays and virus neutralization test (VNT) has been poorly explored in mild COVID-19 patients.MethodsA total of 439 serum specimens were longitudinally collected from 76 healthcare workers with RT-PCR-confirmed COVID-19. The sensitivity (determined weekly) of nine commercial serological assays were evaluated. Specificity was assessed using 69 pre-pandemic sera. Correlation, agreement and concordance with the VNT were also assessed on a subset of 170 samples. Area under the ROC curve (AUC) was estimated at several neutralizing antibody titers.ResultsThe Wantai Total Ab assay targeting the receptor binding domain (RBD) within the S protein presented the best sensitivity at different times during the course of disease. The specificity was greater than 95% for all tests except for the Euroimmun IgA assay. The overall agreement with the presence of neutralizing antibodies ranged from 62.2% (95%CI; 56.0-68.1) for bioMérieux IgM to 91.2% (87.0-94.2) for Siemens. The lowest negative percent agreement (NPA) was found with the Wantai Total Ab assay (NPA 33% (21.1-48.3)). The NPA for other total Ab or IgG assays targeting the S or the RBD was 80.7% (66.7-89.7), 90.3 (78.1-96.1) and 96.8% (86.8-99.3) for Siemens, bioMérieux IgG and DiaSorin, respectively. None of commercial assays have sufficient performance to detect a neutralizing titer of 80 (AUC<0.76).ConclusionsAlthough some assays presented a better agreement with VNT than others, the present findings emphasize that commercialized serological tests including those targeting the RBD cannot substitute a VNT for the assessment of functional antibody response.


Author(s):  
Raymond T Suhandynata ◽  
Melissa A Hoffman ◽  
Deli Huang ◽  
Jenny T Tran ◽  
Michael J Kelner ◽  
...  

Background. Currently it is unknown whether a positive serology results correlates with protective immunity against SARS-CoV-2. There are also concerns regarding the low positive predictive value of SARS-CoV-2 serology tests, especially when testing populations with low disease prevalence. Methods. A neutralization assay was validated in a set of PCR confirmed positive specimens and in a negative cohort. 9,530 specimens were screened using the Diazyme SARS-CoV-2 IgG serology assay and all positive results (N=164) were reanalyzed using the neutralization assay, the Roche total immunoglobin assay, and the Abbott IgG assay. The relationship between the magnitude of a positive SARS-CoV-2 serology result and the levels of neutralizing antibodies detected was correlated. Neutralizing antibody titers (ID50) were also longitudinally monitored in SARS-CoV-2 PCR confirmed patients. Results. The SARS-CoV-2 neutralization assay had a PPA of 96.6% with a SARS-CoV-2 PCR test and a NPA of 98.0% across 100 negative controls. ID50 neutralization titers positively correlated with all three clinical serology platforms. Longitudinal monitoring of hospitalized PCR confirmed COVID-19 patients demonstrates they made high neutralization titers against SARS-CoV-2. PPA between the Diazyme IgG assay alone and the neutralization assay was 50.6%, while combining the Diazyme IgG assay with either the Roche or Abbott platforms increased the PPA to 79.2% and 78.4%, respectively. Conclusions. For the first time, we demonstrate that three widely available clinical serology assays positively correlate with SARS-CoV-2 neutralization activity observed in COVID-19 patients. When a two-platform screen and confirm approach was used for SARS-CoV-2 serology, nearly 80% of two-platform positive specimens had neutralization titers (ID50 >50).


2021 ◽  
Author(s):  
Yunjeong Kim ◽  
Natasha N Gaudreault ◽  
David A Meekins ◽  
Krishani D Perera ◽  
Dashzeveg Bold ◽  
...  

SARS-CoV-2 is a zoonotic agent capable of infecting humans and a wide range of animal species. Over the duration of the pandemic, mutations in the SARS-CoV-2 Spike protein (S) have arisen in circulating viral populations, culminating in the spread of several variants of concern (VOC) with varying degrees of altered virulence, transmissibility, and neutralizing antibody escape. In this study, we employed lentivirus-based pseudotyped viruses that express specific SARS-CoV-2 S protein substitutions and cell lines that stably express ACE2 from nine different animal species to gain insights into the effects of VOC mutations on viral entry and antibody neutralization capability. All animal ACE2 receptors tested, except mink, support viral cell entry for pseudoviruses expressing the parental (prototype Wuhan-1) S at levels comparable to human ACE2. Most single S substitutions (e.g., 452R, 478K, 501Y) did not significantly change virus entry, although 614G and 484K resulted in a decreased efficiency in viral entry.  Conversely, combinatorial VOC substitutions in the S protein were associated with significantly increased entry capacity of pseudotyped viruses compared to that of the parental Wuhan-1 pseudotyped virus. Similarly, infection studies using live ancestral (USA-WA1/2020), Alpha, and Beta SARS-CoV-2 viruses in hamsters revealed a higher replication potential for the Beta variant compared to the ancestral prototype virus. Moreover, neutralizing titers in sera from various animal species, including humans, were significantly reduced by single substitutions of 484K or 452R, double substitutions of 501Y-484K, 452R-484K and 452R-478K and the triple substitution of 501Y-484K-417N, suggesting that 484K and 452R are particularly important for evading neutralizing antibodies in human, cat, and rabbit sera. Cumulatively, this study reveals important insights into the host range of SARS-CoV-2 and the effect of recently emergent S protein substitutions on viral entry, virus replication and antibody-mediated viral neutralization.


Author(s):  
Raymond T Suhandynata ◽  
Melissa A Hoffman ◽  
Deli Huang ◽  
Jenny T Tran ◽  
Michael J Kelner ◽  
...  

Abstract Background It is unknown whether a positive serology result correlates with protective immunity against SARS-CoV-2. There are also concerns regarding the low positive predictive value of SARS-CoV-2 serology tests, especially when testing populations with low disease prevalence. Methods A neutralization assay was validated in a set of PCR-confirmed positive specimens and in a negative cohort. In addition, 9530 specimens were screened using the Diazyme SARS-CoV-2 IgG serology assay and all positive results (N = 164 individuals) were reanalyzed using the neutralization assay, the Roche total immunoglobin assay, and the Abbott IgG assay. The relationship between the magnitude of a positive SARS-CoV-2 serology result and neutralizing activity was determined. Neutralizing antibody titers (50% inhibitory dilution, ID50) were also longitudinally monitored in patients confirmed to have SARS-CoV-2 by PCR. Results The SARS-CoV-2 neutralization assay had a positive percentage agreement (PPA) of 96.6% with a SARS-CoV-2 PCR test and a negative percentage agreement (NPA) of 98.0% across 100 negative control individuals. ID50 neutralization titers positively correlated with all 3 clinical serology platforms. Longitudinal monitoring of hospitalized PCR-confirmed patients with COVID-19 demonstrated they made high neutralization titers against SARS-CoV-2. PPA between the Diazyme IgG assay alone and the neutralization assay was 50.6%, while combining the Diazyme IgG assay with either the Roche or Abbott platforms increased the PPA to 79.2 and 78.4%, respectively. Conclusions These 3 clinical serology assays positively correlate with SARS-CoV-2 neutralization activity observed in patients with COVID-19. All patients confirmed SARS-CoV-2 positive by PCR develop neutralizing antibodies.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1191
Author(s):  
Christin Schmidt ◽  
Mario Perkovic ◽  
Barbara S. Schnierle

Alphaviruses have a single-stranded, positive-sense RNA genome that contains two open reading frames encoding either the non-structural or the structural genes. Upon infection, the genomic RNA is translated into the non-structural proteins (nsPs). NsPs are required for viral RNA replication and transcription driven from the subgenomic promoter (sgP). Transfection of an RNA encoding the luciferase gene under the control of the sgP into cells enabled the detection of replication-competent chikungunya virus (CHIKV) or Mayaro virus (MAYV) with high sensitivity as a function of the induced luciferase activity. This assay principle was additionally used to analyze virus-neutralizing antibodies in sera and might be an alternative to standard virus neutralization assays based on virus titration or the use of genetically modified tagged viruses.


Sign in / Sign up

Export Citation Format

Share Document