High-Resolution Cell-Type Specific Analysis of Cytokinins in Sorted Root Cell Populations of Arabidopsis thaliana

Author(s):  
Ondřej Novák ◽  
Ioanna Antoniadi ◽  
Karin Ljung
2020 ◽  
Vol 21 (17) ◽  
pp. 6385
Author(s):  
William Krogman ◽  
J. Alan Sparks ◽  
Elison B. Blancaflor

Cytoplasmic calcium ([Ca2+]cyt) is a well-characterized second messenger in eukaryotic cells. An elevation in [Ca2+]cyt levels is one of the earliest responses in plant cells after exposure to a range of environmental stimuli. Advances in understanding the role of [Ca2+]cyt in plant development has been facilitated by the use of genetically-encoded reporters such as GCaMP. Most of these studies have relied on promoters such as Cauliflower Mosaic Virus (35S) and Ubiquitin10 (UBQ10) to drive expression of GCaMP in all cell/tissue types. Plant organs such as roots consist of various cell types that likely exhibit unique [Ca2+]cyt responses to exogenous and endogenous signals. However, few studies have addressed this question. Here, we introduce a set of Arabidopsis thaliana lines expressing GCaMP3 in five root cell types including the columella, endodermis, cortex, epidermis, and trichoblasts. We found similarities and differences in the [Ca2+]cyt signature among these root cell types when exposed to adenosine tri-phosphate (ATP), glutamate, aluminum, and salt, which are known to trigger [Ca2+]cyt increases in root cells. These cell type-targeted GCaMP3 lines provide a new resource that should enable more in depth studies that address how a particular environmental stimulus is linked to specific root developmental pathways via [Ca2+]cyt.


Proteomes ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 51 ◽  
Author(s):  
Rashaun S. Wilson ◽  
Angus C. Nairn

Cell-type-specific analysis has become a major focus for many investigators in the field of neuroscience, particularly because of the large number of different cell populations found in brain tissue that play roles in a variety of developmental and behavioral disorders. However, isolation of these specific cell types can be challenging due to their nonuniformity and complex projections to different brain regions. Moreover, many analytical techniques used for protein detection and quantitation remain insensitive to the low amounts of protein extracted from specific cell populations. Despite these challenges, methods to improve proteomic yield and increase resolution continue to develop at a rapid rate. In this review, we highlight the importance of cell-type-specific proteomics in neuroscience and the technical difficulties associated. Furthermore, current progress and technological advancements in cell-type-specific proteomics research are discussed with an emphasis in neuroscience.


2020 ◽  
Author(s):  
Emily A. McGlade ◽  
Gerardo G. Herrera ◽  
Kalli K. Stephens ◽  
Sierra L. W. Olsen ◽  
Sarayut Winuthayanon ◽  
...  

AbstractOne of the endogenous estrogens, 17β-estradiol (E2) is a female steroid hormone secreted from the ovary. It is well established that E2 causes biochemical and histological changes in the uterus. The oviduct response to E2 is virtually unknown in an in vivo environment. In this study, we assessed the effect of E2 on each oviductal cell type, using an ovariectomized-hormone-replacement mouse model, single cell RNA-sequencing (scRNA-seq), in situ hybridization, and cell-type-specific deletion in mice. We found that each cell type in the oviduct responded to E2 distinctively, especially ciliated and secretory epithelial cells. The treatment of exogenous E2 did not drastically alter the transcriptomic profile from that of endogenous E2 produced during estrus. Moreover, we have identified and validated genes of interest in our datasets that may be used as cell- and region-specific markers in the oviduct. Insulin-like growth factor 1 (Igf1) was characterized as an E2-target gene in the mouse oviduct and was also expressed in human Fallopian tubes. Deletion of Igf1 in progesterone receptor (Pgr)-expressing cells resulted in female subfertility, partially due to an embryo developmental defect and embryo retention within the oviduct. In summary, we have shown that oviductal cell types are differentially regulated by E2 and support gene expression changes that are required for normal embryo development and transport in mouse models.


2021 ◽  
Author(s):  
Firat Terzi ◽  
Johannes Knabbe ◽  
Sidney B. Cambridge

SummaryGenetic engineering of quintuple transgenic brain tissue was used to establish a low background, Cre-dependent version of the inducible Tet-On system for fast, cell type-specific transgene expression in vivo. Co-expression of a constitutive, Cre-dependent fluorescent marker selectively allowed single cell analyses before and after inducible, tet-dependent transgene expression. Here, we used this method for acute, high-resolution manipulation of neuronal activity in the living brain. Single induction of the potassium channel Kir2.1 produced cell type-specific silencing within hours that lasted for at least three days. Longitudinal in vivo imaging of spontaneous calcium transients and neuronal morphology demonstrated that prolonged silencing did not alter spine densities or synaptic input strength. Furthermore, selective induction of Kir2.1 in parvalbumin interneurons increased the activity of surrounding neurons in a distance-dependent manner. This high-resolution, inducible interference and interval imaging of individual cells (high I5, ‘HighFive’) method thus allows visualizing temporally precise, genetic perturbations of defined cells.


2007 ◽  
Vol 21 (5) ◽  
Author(s):  
Ronald M. Lynch ◽  
Roger Barthelson ◽  
Julia Cates ◽  
Heddwen L. Brooks ◽  
David W. Galbraith

Sign in / Sign up

Export Citation Format

Share Document