Long-Term Confocal Imaging of Arabidopsis thaliana Roots for Simultaneous Quantification of Root Growth and Fluorescent Signals

Author(s):  
Delyana Stoeva ◽  
Christian Göschl ◽  
Bruce Corliss ◽  
Wolfgang Busch
2021 ◽  
Vol 22 (11) ◽  
pp. 5739
Author(s):  
Joo Yeol Kim ◽  
Hyo-Jun Lee ◽  
Jin A Kim ◽  
Mi-Jeong Jeong

Sound waves affect plants at the biochemical, physical, and genetic levels. However, the mechanisms by which plants respond to sound waves are largely unknown. Therefore, the aim of this study was to examine the effect of sound waves on Arabidopsis thaliana growth. The results of the study showed that Arabidopsis seeds exposed to sound waves (100 and 100 + 9k Hz) for 15 h per day for 3 day had significantly longer root growth than that in the control group. The root length and cell number in the root apical meristem were significantly affected by sound waves. Furthermore, genes involved in cell division were upregulated in seedlings exposed to sound waves. Root development was affected by the concentration and activity of some phytohormones, including cytokinin and auxin. Analysis of the expression levels of genes regulating cytokinin and auxin biosynthesis and signaling showed that cytokinin and ethylene signaling genes were downregulated, while auxin signaling and biosynthesis genes were upregulated in Arabidopsis exposed to sound waves. Additionally, the cytokinin and auxin concentrations of the roots of Arabidopsis plants increased and decreased, respectively, after exposure to sound waves. Our findings suggest that sound waves are potential agricultural tools for improving crop growth performance.


2021 ◽  
Vol 128 ◽  
pp. 126308
Author(s):  
João William Bossolani ◽  
Carlos Alexandre Costa Crusciol ◽  
José Roberto Portugal ◽  
Luiz Gustavo Moretti ◽  
Ariani Garcia ◽  
...  

Author(s):  
Yue Zhang ◽  
Yanhuang An ◽  
Ning Yang ◽  
Wei Wang ◽  
Ruirui Liu ◽  
...  

2021 ◽  
Author(s):  
Chen Hu ◽  
Wojciech J. Nawrocki ◽  
Roberta Croce

2012 ◽  
Vol 214 (3) ◽  
pp. 289-299 ◽  
Author(s):  
Amy R Quinn ◽  
Cynthia L Blanco ◽  
Carla Perego ◽  
Giovanna Finzi ◽  
Stefano La Rosa ◽  
...  

Erratic regulation of glucose metabolism including hyperglycemia is a common condition in premature infants and is associated with increased morbidity and mortality. The objective of this study was to examine histological and ultrastructural differences in the endocrine pancreas in fetal (throughout gestation) and neonatal baboons. Twelve fetal baboons were delivered at 125 days (d) gestational age (GA), 140d GA, or 175d GA. Eight animals were delivered at term (185d GA); half were fed for 5 days. Seventy-three nondiabetic adult baboons were used for comparison. Pancreatic tissue was studied using light microscopy, confocal imaging, and electron microscopy. The fetal and neonatal endocrine pancreas islet architecture became more organized as GA advanced. The percent areas of α-β-δ-cell type were similar within each fetal and newborn GA (NS) but were higher than the adults (P<0.05) regardless of GA. The ratio of β cells within the islet (whole and core) increased with gestation (P<0.01). Neonatal baboons, which survived for 5 days (feeding), had a 2.5-fold increase in pancreas weight compared with their counterparts killed at birth (P=0.01). Endocrine cells were also found in exocrine ductal and acinar cells in 125, 140 and 175d GA fetuses. Subpopulation of tissue that coexpressed trypsin and glucagon/insulin shows the presence of cells with mixed endo–exocrine lineage in fetuses. In summary, the fetal endocrine pancreas has no prevalence of a α-β-δ-cell type with larger endocrine cell percent areas than adults. Cells with mixed endocrine/exocrine phenotype occur during fetal development. Developmental differences may play a role in glucose homeostasis during the neonatal period and may have long-term implications.


2014 ◽  
Vol 66 (1) ◽  
pp. 71-83 ◽  
Author(s):  
Tania V. Humphrey ◽  
Katrina E. Haasen ◽  
May Grace Aldea-Brydges ◽  
He Sun ◽  
Yara Zayed ◽  
...  

2018 ◽  
Author(s):  
Nadia Bouain ◽  
Arthur Korte ◽  
Santosh B. Satbhai ◽  
Seung Y. Rhee ◽  
Wolfgang Busch ◽  
...  

AbstractThe molecular genetic mechanisms by which plants modulate their root growth rate (RGR) in response to nutrient deficiency are largely unknown. Using a panel of Arabidopsis thaliana natural accessions, we provide a comprehensive combinatorial analysis of RGR variation under macro- and micronutrient deficiency, namely phosphorus (P), iron (Fe), and zinc (Zn), which affect root growth in opposite directions. We found that while -P stimulates early RGR of most accessions, -Fe or -Zn reduces it. The combination of either -P-Fe or -P-Zn leads to suppression of the growth inhibition exerted by -Fe or -Zn alone. Surprisingly, Arabidopsis reference accession Columbia (Col-0) is not representative of the species under -P and -Zn. Using a genome wide association study, we identify candidate genes that control RGR under the assayed nutrient deficiency conditions. By using a network biology driven search using these candidate genes, we further identify a functional module enriched in regulation of cell cycle, DNA replication and chromatin modification that possibly underlies the suppression of root growth reduction in -P-Fe conditions. Collectively, our findings provide a framework for understanding the regulation of RGR under nutrient deficiency, and open new routes for the identification of both large effect genes and favorable allelic variations to improve root growth.


Planta ◽  
2011 ◽  
Vol 234 (6) ◽  
pp. 1163-1177 ◽  
Author(s):  
Alejandra Hernández-Barrera ◽  
Yamel Ugartechea-Chirino ◽  
Svetlana Shishkova ◽  
Selene Napsucialy-Mendivil ◽  
Aleš Soukup ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document