Brain Morphometry: Suicide

2018 ◽  
pp. 403-427 ◽  
Author(s):  
Savannah N. Gosnell ◽  
David L. Molfese ◽  
Ramiro Salas
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudia Modenato ◽  
Kuldeep Kumar ◽  
Clara Moreau ◽  
Sandra Martin-Brevet ◽  
Guillaume Huguet ◽  
...  

AbstractMany copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions.


Alcohol ◽  
2020 ◽  
Author(s):  
Ali Haidar Syaifullah ◽  
Akihiko Shiino ◽  
Akira Fujiyoshi ◽  
Aya Kadota ◽  
Keiko Kondo ◽  
...  

2005 ◽  
Vol 24 (6) ◽  
pp. 451-467 ◽  
Author(s):  
Raymond G. York ◽  
John Barnett ◽  
Michael F. Girard ◽  
David R. Mattie ◽  
Marni V. K. Bekkedal ◽  
...  

A developmental neurotoxicity study was conducted to generate additional data on the potential functional and morphological hazard to the central nervous system caused by ammonium perchlorate in offspring from in utero and lactation exposure. Female Sprague-Dawley rats (23 to 25/group) were given continuous access to 0 (carrier), 0.1, 1.0, 3.0, and 10.0 mg/kg-day perchlorate in the drinking water beginning 2 weeks prior to mating and continuing through day 10 of lactation for the behavioral function assessment or given continuous access to 0 (carrier), 0.1, 1.0, 3.0, and 30.0 mg/kg-day beginning on gestation day 0 and continuing through day 10 of lactation for neurodevelopment assessments. Motor activity was conducted on postpartum days 14, 18, and 22 and juvenile brain weights, neurohistopathological examinations, and regional brain morphometry were conducted on postpartum days 10 and 22. This research revealed a sexually dimorphic response, with some brain regions being larger in perchlorate-treated male rats than in comparable controls. Even so, there was no evidence of any obvious exposure-related effects on male rat brain weights or neuropathology. The most consistent exposure-related effect in the male pups was on the thickness of the corpus callosum, with both the right- and left-sided measures of the thickness of this white matter tract being significantly greater for the male pups in the 0.1 and 1.0 mg/kg-day exposure groups. The behavioral testing suggests prenatal exposure to ammonium perchlorate does not affect the development of gross motor movements in the pups.


Author(s):  
Yann Quidé ◽  
Natalie Matosin ◽  
Joshua R. Atkins ◽  
Chantel Fitzsimmons ◽  
Murray J. Cairns ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hongkai Wang ◽  
Yang Tian ◽  
Yang Liu ◽  
Zhaofeng Chen ◽  
Haoyu Zhai ◽  
...  

AbstractStatistical Parametric Mapping (SPM) is a computational approach for analysing functional brain images like Positron Emission Tomography (PET). When performing SPM analysis for different patient populations, brain PET template images representing population-specific brain morphometry and metabolism features are helpful. However, most currently available brain PET templates were constructed using the Caucasian data. To enrich the family of publicly available brain PET templates, we created Chinese-specific template images based on 116 [18F]-fluorodeoxyglucose ([18F]-FDG) PET images of normal participants. These images were warped into a common averaged space, in which the mean and standard deviation templates were both computed. We also developed the SPM analysis programmes to facilitate easy use of the templates. Our templates were validated through the SPM analysis of Alzheimer’s and Parkinson’s patient images. The resultant SPM t-maps accurately depicted the disease-related brain regions with abnormal [18F]-FDG uptake, proving the templates’ effectiveness in brain function impairment analysis.


2019 ◽  
Author(s):  
Geneviève Richard ◽  
Knut Kolskår ◽  
Kristine M. Ulrichsen ◽  
Tobias Kaufmann ◽  
Dag Alnæs ◽  
...  

AbstractCognitive deficits are important predictors for outcome, independence and quality of life after stroke, but often remain unnoticed and unattended because other impairments are more evident. Computerized cognitive training (CCT) is among the candidate interventions that may alleviate cognitive difficulties, but the evidence supporting its feasibility and effectiveness is scarce, partly due to the lack of tools for outcome prediction and monitoring. Magnetic resonance imaging (MRI) provides candidate markers for disease monitoring and outcome prediction. By integrating information not only about lesion extent and localization, but also regarding the integrity of the unaffected parts of the brain, advanced MRI provides relevant information for developing better prediction models in order to tailor cognitive intervention for patients, especially in a chronic phase.Using brain age prediction based on MRI based brain morphometry and machine learning, we tested the hypotheses that stroke patients with a younger-appearing brain relative to their chronological age perform better on cognitive tests and benefit more from cognitive training compared to patients with an older-appearing brain. In this randomized double-blind study, 54 patients who suffered mild stroke (>6 months since hospital admission, NIHSS<7 at hospital discharge) underwent 3-weeks CCT and MRI before and after the intervention. In addition, patients were randomized to one of two groups receiving either active or sham transcranial direct current stimulation (tDCS). We tested for main effects of brain age gap (estimated age – chronological age) on cognitive performance, and associations between brain age gap and task improvement. Finally, we tested if longitudinal changes in brain age gap during the intervention were sensitive to treatment response. Briefly, our results suggest that longitudinal brain age prediction based on automated brain morphometry is feasible and reliable in stroke patients. However, no significant association between brain age and both performance and response to cognitive training were found.


2020 ◽  
Author(s):  
Claudia Modenato ◽  
Kuldeep Kumar ◽  
Clara Moreau ◽  
Sandra Martin-Brevet ◽  
Guillaume Huguet ◽  
...  

AbstractBackgroundCopy Number Variants (CNVs) associated with autism and schizophrenia have large effects on brain anatomy. Yet, neuroimaging studies have been conducted one mutation at a time. We hypothesize that neuropsychiatric CNVs may exert general effects on brain morphometry because they confer risk for overlapping psychiatric conditions.MethodsWe analyzed T1-weighted MRIs and characterized shared patterns on brain anatomy across 8 neuropsychiatric CNVs. Clinically ascertained samples included 1q21.1 (n=48), 16p11.2 (n=156), or 22q11.2 (n=96) and 331 non-carriers. Non-clinically ascertained samples from the UK Biobank included 1q21.1 (n=19), 16p11.2 (n=8), 22q11.2 (n=9), 15q11.2 (n=148) and 965 non-carriers. Canonical correlation analysis (CCA) and univariate models were used to interrogate brain morphometry changes across 8 CNVs.ResultsEight CNVs affect regional brain volumes along two main gene-morphometry dimensions identified by CCA. While fronto-temporal regions contributed to dimension 1, dimension 2 was driven by subcortical, parietal and occipital regions. Consistently, voxel-wise whole-brain analyses identified the same regions involved in patterns of alteration present across the 4 deletions and duplications. These neuroanatomical patterns are similar to those observed in cross-psychiatric disorder meta-analyses. Deletions and duplications at all 4 loci show mirror effects at either the global and/or the regional level.ConclusionNeuropsychiatric CNVs share neuroanatomical signatures characterized by a parsimonious set of brain dimensions. The latter may underlie the risk conferred by CNVs for a similar spectrum of neuropsychiatric conditions.


Sign in / Sign up

Export Citation Format

Share Document