Laser Capture Micro-Dissection Coupled to RNA Sequencing: A Powerful Approach Applied to the Model Legume Medicago truncatula in Interaction with Sinorhizobium meliloti

Author(s):  
Brice Roux ◽  
Nathalie Rodde ◽  
Sandra Moreau ◽  
Marie-Françoise Jardinaud ◽  
Pascal Gamas
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noriyoshi Isozumi ◽  
Yuya Masubuchi ◽  
Tomohiro Imamura ◽  
Masashi Mori ◽  
Hironori Koga ◽  
...  

AbstractA model legume, Medicago truncatula, has over 600 nodule-specific cysteine-rich (NCR) peptides required for symbiosis with rhizobia. Among them, NCR169, an essential factor for establishing symbiosis, has four cysteine residues that are indispensable for its function. However, knowledge of NCR169 structure and mechanism of action is still lacking. In this study, we solved two NMR structures of NCR169 caused by different disulfide linkage patterns. We show that both structures have a consensus C-terminal β-sheet attached to an extended N-terminal region with dissimilar features; one moves widely, whereas the other is relatively stapled. We further revealed that the disulfide bonds of NCR169 contribute to its structural stability and solubility. Regarding the function, one of the NCR169 oxidized forms could bind to negatively charged bacterial phospholipids. Furthermore, the positively charged lysine-rich region of NCR169 may be responsible for its antimicrobial activity against Escherichia coli and Sinorhizobium meliloti. This active region was disordered even in the phospholipid bound state, suggesting that the disordered conformation of this region is key to its function. Morphological observations suggested the mechanism of action of NCR169 on bacteria. The present study on NCR169 provides new insights into the structure and function of NCR peptides.


2015 ◽  
Vol 28 (12) ◽  
pp. 1353-1363 ◽  
Author(s):  
Pauline Blanquet ◽  
Liliana Silva ◽  
Olivier Catrice ◽  
Claude Bruand ◽  
Helena Carvalho ◽  
...  

Nitric oxide (NO) is involved in various plant-microbe interactions. In the symbiosis between soil bacterium Sinorhizobium meliloti and model legume Medicago truncatula, NO is required for an optimal establishment of the interaction but is also a signal for nodule senescence. Little is known about the molecular mechanisms responsible for NO effects in the legume-rhizobium interaction. Here, we investigate the contribution of the bacterial NO response to the modulation of a plant protein post-translational modification in nitrogen-fixing nodules. We made use of different bacterial mutants to finely modulate NO levels inside M. truncatula root nodules and to examine the consequence on tyrosine nitration of the plant glutamine synthetase, a protein responsible for assimilation of the ammonia released by nitrogen fixation. Our results reveal that S. meliloti possesses several proteins that limit inactivation of plant enzyme activity via NO-mediated post-translational modifications. This is the first demonstration that rhizobia can impact the course of nitrogen fixation by modulating the activity of a plant protein.


2017 ◽  
Vol 30 (5) ◽  
pp. 399-409 ◽  
Author(s):  
Théophile Kazmierczak ◽  
Marianna Nagymihály ◽  
Florian Lamouche ◽  
Quentin Barrière ◽  
Ibtissem Guefrachi ◽  
...  

Legume plants interact with rhizobia to form nitrogen-fixing root nodules. Legume-rhizobium interactions are specific and only compatible rhizobia and plant species will lead to nodule formation. Even within compatible interactions, the genotype of both the plant and the bacterial symbiont will impact on the efficiency of nodule functioning and nitrogen-fixation activity. The model legume Medicago truncatula forms nodules with several species of the Sinorhizobium genus. However, the efficiency of these bacterial strains is highly variable. In this study, we compared the symbiotic efficiency of Sinorhizobium meliloti strains Sm1021, 102F34, and FSM-MA, and Sinorhizobium medicae strain WSM419 on the two widely used M. truncatula accessions A17 and R108. The efficiency of the interactions was determined by multiple parameters. We found a high effectiveness of the FSM-MA strain with both M. truncatula accessions. In contrast, specific highly efficient interactions were obtained for the A17-WSM419 and R108-102F34 combinations. Remarkably, the widely used Sm1021 strain performed weakly on both hosts. We showed that Sm1021 efficiently induced nodule organogenesis but cannot fully activate the differentiation of the symbiotic nodule cells, explaining its weaker performance. These results will be informative for the selection of appropriate rhizobium strains in functional studies on symbiosis using these M. truncatula accessions, particularly for research focusing on late stages of the nodulation process.


2005 ◽  
Vol 18 (6) ◽  
pp. 521-532 ◽  
Author(s):  
Lydia J. Bright ◽  
Yan Liang ◽  
David M. Mitchell ◽  
Jeanne M. Harris

The evolutionary origins of legume root nodules are largely unknown. We have identified a gene,LATD, of the model legume Medicago truncatula, that is required for both nodule and root development, suggesting that these two developmental processes may share a common evolutionary origin. The latd mutant plants initiate nodule formation but do not complete it, resulting in immature, non-nitrogen-fixing nodules. Similarly, lateral roots initiate, but remain shortstumps. The primary root, which initially appears to be wild type, gradually ceases growth and forms an abnormal tipthat resembles that of the mutant lateral roots. Infection by the rhizobial partner, Sinorhizobium meliloti, can occur, although infection is rarely completed. Once inside latd mutant nodules, S. meliloti fails to express rhizobial genes associatedwith the developmental transition from free-living bacterium to endosymbiont, such as bacA and nex38. The infecting rhizobia also fail to express nifH and fix nitrogen. Thus, both plant and bacterial development are blocked in latd mutant roots. Based on the latd mutant phenotype, we propose that the wild-type function of the LATD gene is to maintain root meristems. The strong requirement of both nodules and lateral roots for wild-type LATD gene function supports lateral roots as a possible evolutionary origin for legume nodules.


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 312 ◽  
Author(s):  
Haibao Tang ◽  
Vivek Krishnakumar ◽  
Shelby Bidwell ◽  
Benjamin Rosen ◽  
Agnes Chan ◽  
...  

2001 ◽  
Vol 14 (12) ◽  
pp. 1364-1367 ◽  
Author(s):  
Kathryn A. VandenBosch ◽  
Julia Frugoli

At the 2nd Medicago meeting (a satellite of the 1999 IS-MPMI meeting in Amsterdam), investigators perceived a need for standardization of genetic nomenclature in Medicago truncatula, due to the rapid growth of research on this species in the past few years. Establishment of such standards grew out of discussions begun at this meeting and continued electronically throughout the M. truncatula community. The proposed standards presented here are the consensus results of those discussions. In addition to standards for gene nomenclature, a method for community governance and a website for cataloging gene names and submitting new ones are presented. The purpose of implementing these guidelines is to help maintain consistency in the literature, to avoid redundancy, to contribute to the accuracy of databases, and, in general, to aid the international collaborations that have made M. truncatula a model system for legume biology.


2008 ◽  
Vol 21 (6) ◽  
pp. 781-790 ◽  
Author(s):  
Alberto Ferrarini ◽  
Matteo De Stefano ◽  
Emmanuel Baudouin ◽  
Chiara Pucciariello ◽  
Annalisa Polverari ◽  
...  

Nitric oxide (NO) is involved in diverse physiological processes in plants, including growth, development, response to pathogens, and interactions with beneficial microorganisms. In this work, a dedicated microarray representing the widest database available of NO-related transcripts in plants has been produced with 999 genes identified by a cDNA amplified fragment length polymorphism analysis as modulated in Medicago truncatula roots treated with two NO donors. The microarray then was used to monitor the expression of NO-responsive genes in M. truncatula during the incompatible interaction with the foliar pathogen Colletotrichum trifolii race 1 and during the symbiotic interaction with Sinorhizobium meliloti 1021. A wide modulation of NO-related genes has been detected during the hypersensitive reaction or during nodule formation and is discussed with special emphasis on the physiological relevance of these genes in the context of the two biotic interactions. This work clearly shows that NO-responsive genes behave differently depending on the plant organ and on the type of interaction, strengthening the need to consider regulatory networks, including different signaling molecules.


Sign in / Sign up

Export Citation Format

Share Document