Vesicle-Based Assays to Study Membrane Interactions of Amyloid Peptides

Author(s):  
Ravit Malishev ◽  
Sofiya Kolusheva ◽  
Raz Jelinek
Author(s):  
Sunnia Rajput ◽  
Marc-Antoine Sani ◽  
David W. Keizer ◽  
Frances Separovic

Alzheimer's disease (AD) is a common neurodegenerative condition that involves the extracellular accumulation of amyloid plaques predominantly consisting of Aβ peptide aggregates. The amyloid plaques and soluble oligomeric species of Aβ are believed to be the major cause of synaptic dysfunction in AD brain and their cytotoxic mechanisms have been proposed to involve interactions with cell membranes. In this review, we discuss our solid-state nuclear magnetic resonance (ssNMR) studies of Aβ interactions with model membranes.


Author(s):  
A. C. Enders

The alteration in membrane relationships seen at implantation include 1) interaction between cytotrophoblast cells to form syncytial trophoblast and addition to the syncytium by subsequent fusion of cytotrophoblast cells, 2) formation of a wide variety of functional complex relationships by trophoblast with uterine epithelial cells in the process of invasion of the endometrium, and 3) in the case of the rabbit, fusion of some uterine epithelial cells with the trophoblast.Formation of syncytium is apparently a membrane fusion phenomenon in which rapid confluence of cytoplasm often results in isolation of residual membrane within masses of syncytial trophoblast. Often the last areas of membrane to disappear are those including a desmosome where the cell membranes are apparently held apart from fusion.


2020 ◽  
Vol 27 (20) ◽  
pp. 3330-3345
Author(s):  
Ana G. Rodríguez-Hernández ◽  
Rafael Vazquez-Duhalt ◽  
Alejandro Huerta-Saquero

Nanomaterials have become part of our daily lives, particularly nanoparticles contained in food, water, cosmetics, additives and textiles. Nanoparticles interact with organisms at the cellular level. The cell membrane is the first protective barrier against the potential toxic effect of nanoparticles. This first contact, including the interaction between the cell membranes -and associated proteins- and the nanoparticles is critically reviewed here. Nanoparticles, depending on their toxicity, can cause cellular physiology alterations, such as a disruption in cell signaling or changes in gene expression and they can trigger immune responses and even apoptosis. Additionally, the fundamental thermodynamics behind the nanoparticle-membrane and nanoparticle-proteins-membrane interactions are discussed. The analysis is intended to increase our insight into the mechanisms involved in these interactions. Finally, consequences are reviewed and discussed.


Sign in / Sign up

Export Citation Format

Share Document