The Canonical Wnt/β-Catenin Signalling Pathway

Author(s):  
Nick Barker
2019 ◽  
Vol 103 (5) ◽  
pp. 1602-1609
Author(s):  
Liya Bai ◽  
Shuxia Gao ◽  
Haitao Sun ◽  
Xueyan Zhao ◽  
Liping Yang ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1163
Author(s):  
Sebastian L. Wild ◽  
Aya Elghajiji ◽  
Carmen Grimaldos Rodriguez ◽  
Stephen D. Weston ◽  
Zoë D. Burke ◽  
...  

The canonical Wnt (Wnt/β-catenin) signalling pathway is highly conserved and plays a critical role in regulating cellular processes both during development and in adult tissue homeostasis. The Wnt/β-catenin signalling pathway is vital for correct body patterning and is involved in fate specification of the gut tube, the primitive precursor of liver. In adults, the Wnt/β-catenin pathway is increasingly recognised as an important regulator of metabolic zonation, homeostatic renewal and regeneration in response to injury throughout the liver. Herein, we review recent developments relating to the key role of the pathway in the patterning and fate specification of the liver, in the directed differentiation of pluripotent stem cells into hepatocytes and in governing proliferation and zonation in the adult liver. We pay particular attention to recent contributions to the controversy surrounding homeostatic renewal and proliferation in response to injury. Furthermore, we discuss how crosstalk between the Wnt/β-catenin and Hedgehog (Hh) and hypoxia inducible factor (HIF) pathways works to maintain liver homeostasis. Advancing our understanding of this pathway will benefit our ability to model disease, screen drugs and generate tissue and organ replacements for regenerative medicine.


2008 ◽  
Vol 416 (2) ◽  
pp. 211-218 ◽  
Author(s):  
Sasha H. Anagnostou ◽  
Peter R. Shepherd

The canonical Wnt signalling pathway acts by slowing the rate of ubiquitin-mediated β-catenin degradation. This results in the accumulation and subsequent nuclear translocation of β-catenin, which induces the expression of a number of genes involved in growth, differentiation and metabolism. The mechanisms regulating the Wnt signalling pathway in the physiological context is still not fully understood. In the present study we provide evidence that changes in glucose levels within the physiological range can acutely regulate the levels of β-catenin in two macrophage cell lines (J774.2 and RAW264.7 cells). In particular we find that glucose induces these effects by promoting an autocrine activation of Wnt signalling that is mediated by the hexosamine pathway and changes in N-linked glycosylation of proteins. These studies reveal that the Wnt/β-catenin system is a glucose-responsive signalling system and as such is likely to play a role in pathways involved in sensing changes in metabolic status.


2010 ◽  
Vol 44 (4) ◽  
pp. 195-201 ◽  
Author(s):  
Samantha Gardner ◽  
Emmanouil Stavrou ◽  
Patricia E Rischitor ◽  
Elena Faccenda ◽  
Adam J Pawson

The binding of GnRH to its receptor on pituitary gonadotropes leads to the targeting of a diverse array of signalling mediators. These mediators drive multiple signal transduction pathways, which in turn regulate a variety of cellular processes, including the biosynthesis and secretion of the gonadotropins LH and FSH. Advances in our understanding of the mechanisms and signalling pathways that are recruited to regulate gonadotrope function are continually being made. This review will focus on the recent demonstration that key mediators of the canonical Wnt signalling pathway are targeted by GnRH in gonadotropes, and that these may play essential roles in regulating the expression of many of the key players in gonadotrope biology, including the GnRH receptor and the gonadotropins.


2021 ◽  
Author(s):  
Salini K ◽  
Niranjali Devaraj Sivasithamparam

Abstract Breast cancer treatment strategy depends mainly on the receptor status. Our aim was to identify a herbal preparation, effective against breast cancer, irrespective of hormone sensitivity, and to understand its molecular mechanism. The rich antioxidant composition of Hawthorn ( Crataegus oxyacantha ) makes it a promising anti-cancer drug candidate. Polyphenol-rich methanolic extract of C. oxyacantha berry (M.Co) was found to be cytotoxic on hormone receptor positive (MCF-7) and triple negative (MDA-MB-231) breast cancer cell lines, at a dose (75 mg/ml) safe on normal cells. It could effectively inhibit tumor cell proliferation and arrest cell cycle at G1/S transition in both cell lines. Molecular targets were selected from different levels of canonical Wnt signalling pathway (such as autocrine and antagonistic ligands, receptor, effector, cytoplasmic components, downstream targets and pathway antagonist), since they are frequently found dysregulated in all breast cancers and their aberrant activation is associated with cancer stem cell expansion. M.Co could significantly downregulate the expression of Wnt pathway agonists and upregulate that of Wnt antagonists at transcriptional and translational levels, in both cell lines. To conclude, C. oxyacantha berry extract is effective against breast cancer irrespective of its hormone dependency and cancer growth inhibition at stem cell level can be expected.


2014 ◽  
Vol 26 (4) ◽  
pp. 551 ◽  
Author(s):  
Mohammad Zandi ◽  
Musharifa Muzaffar ◽  
Syed Mohmad Shah ◽  
Ramakant Kaushik ◽  
Manoj Kumar Singh ◽  
...  

The aim of this study was to investigate the transcriptional profile and role of WNT3A signalling in maintaining buffalo embryonic stem (ES) cells in a pluripotent state and in the induction of their differentiation. ES cells were derived from embryos produced by in vitro fertilisation (iESC), parthenogenesis (pESC) and hand-made cloning (cESC). The expression of WNT3A, its receptors and intermediate signalling pathways were found to be conserved in ES cells derived from the three different sources. WNT3A was expressed in ES cells but not in embryoid bodies derived from iESC or in buffalo fetal fibroblast cells. It was revealed by real-time polymerase chain reaction analysis that following supplementation of culture medium with WNT3A (100, 200 or 400 ng mL–1) a significant increase (P < 0.05) was observed in the expression level of β-CATENIN, which indicated the activation of the canonical WNT pathway. WNT3A, in combination with exogenous fibroblast growth factor-2 and leukaemia inhibitory factor, induced proliferation of undifferentiated ES cells. Differentiation studies showed that WNT3A caused formation of scaffold-like structures and inhibition of differentiation into neuron-like cells. In conclusion, the WNT3A signalling pathway is necessary both for maintaining undifferentiated buffalo ES cells as well as for directing their differentiation.


2011 ◽  
Vol 36 (5) ◽  
pp. 534-540 ◽  
Author(s):  
Y.-H. Li ◽  
K. Zhang ◽  
J.-X. Ye ◽  
X.-H. Lian ◽  
T. Yang

2014 ◽  
Vol 39 (3) ◽  
pp. 368-375 ◽  
Author(s):  
Y. Y. Lim ◽  
S. Y. Kim ◽  
H. M. Kim ◽  
K. S. Li ◽  
M. N. Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document