scholarly journals Analysis of Wnt Signaling During Caenorhabditis elegans Postembryonic Development

Author(s):  
Samantha Van Hoffelen ◽  
Michael A. Herman
Development ◽  
1999 ◽  
Vol 126 (4) ◽  
pp. 805-814 ◽  
Author(s):  
C.P. Hunter ◽  
J.M. Harris ◽  
J.N. Maloof ◽  
C. Kenyon

In Caenorhabditis elegans males, a row of epidermal precursor cells called seam cells generates a pattern of cuticular alae in anterior body regions and neural sensilla called rays in the posterior. The Hox gene mab-5 is required for two posterior seam cells, V5 and V6, to generate rays. In mab-5 mutant males, V5 and V6 do not generate sensory ray lineages but instead generate lineages that lead to alae. Here we show that two independent regulatory pathways can activate mab-5 expression in the V cells. First, the caudal homolog pal-1 turns on mab-5 in V6 during embryogenesis. Second, a Wnt signaling pathway is capable of activating mab-5 in the V cells during postembryonic development; however, during normal development Wnt signaling is inhibited by signals from neighboring V cells. The inhibition of this Wnt signaling pathway by lateral signals between the V cells limits the number of rays in the animal and also determines the position of the boundary between alae and rays.


Genetics ◽  
2017 ◽  
Vol 206 (4) ◽  
pp. 1951-1967 ◽  
Author(s):  
Kristian Saied-Santiago ◽  
Robert A. Townley ◽  
John D. Attonito ◽  
Dayse S. da Cunha ◽  
Carlos A. Díaz-Balzac ◽  
...  

2016 ◽  
Vol 6 (12) ◽  
pp. 4077-4086 ◽  
Author(s):  
Theresa L B Edelman ◽  
Katherine A McCulloch ◽  
Angela Barr ◽  
Christian Frøkjær-Jensen ◽  
Erik M Jorgensen ◽  
...  

Abstract The Caenorhabditis elegans heterochronic gene pathway regulates the relative timing of events during postembryonic development. lin-42, the worm homolog of the circadian clock gene, period, is a critical element of this pathway. lin-42 function has been defined by a set of hypomorphic alleles that cause precocious phenotypes, in which later developmental events, such as the terminal differentiation of hypodermal cells, occur too early. A subset of alleles also reveals a significant role for lin-42 in molting; larval stages are lengthened and ecdysis often fails in these mutant animals. lin-42 is a complex locus, encoding overlapping and nonoverlapping isoforms. Although existing alleles that affect subsets of isoforms have illuminated important and distinct roles for this gene in developmental timing, molting, and the decision to enter the alternative dauer state, it is essential to have a null allele to understand all of the roles of lin-42 and its individual isoforms. To remedy this problem and discover the null phenotype, we engineered an allele that deletes the entire lin-42 protein-coding region. lin-42 null mutants are homozygously viable, but have more severe phenotypes than observed in previously characterized hypomorphic alleles. We also provide additional evidence for this conclusion by using the null allele as a base for reintroducing different isoforms, showing that each isoform can provide heterochronic and molting pathway activities. Transcript levels of the nonoverlapping isoforms appear to be under coordinate temporal regulation, despite being driven by independent promoters. The lin-42 null allele will continue to be an important tool for dissecting the functions of lin-42 in molting and developmental timing.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Huanhu Zhu ◽  
Huali Shen ◽  
Aileen K Sewell ◽  
Marina Kniazeva ◽  
Min Han

Regulation of animal development in response to nutritional cues is an intensely studied problem related to disease and aging. While extensive studies indicated roles of the Target of Rapamycin (TOR) in sensing certain nutrients for controlling growth and metabolism, the roles of fatty acids and lipids in TOR-involved nutrient/food responses are obscure. Caenorhabditis elegans halts postembryonic growth and development shortly after hatching in response to monomethyl branched-chain fatty acid (mmBCFA) deficiency. Here, we report that an mmBCFA-derived sphingolipid, d17iso-glucosylceramide, is a critical metabolite in regulating growth and development. Further analysis indicated that this lipid function is mediated by TORC1 and antagonized by the NPRL-2/3 complex in the intestine. Strikingly, the essential lipid function is bypassed by activating TORC1 or inhibiting NPRL-2/3. Our findings uncover a novel lipid-TORC1 signaling pathway that coordinates nutrient and metabolic status with growth and development, advancing our understanding of the physiological roles of mmBCFAs, ceramides, and TOR.


2002 ◽  
Vol 383 (7-8) ◽  
pp. 1263-1266 ◽  
Author(s):  
M. Takahashi ◽  
H. Iwasaki ◽  
H. Inoue ◽  
K. Takahashi

Abstract Reverse genetic analysis was performed on the Caenorhabditis elegans 26S proteasome subunit genes by doublestranded RNAmediated interference (RNAi). Embryonic and postembryonic lethality was caused by interference of all of the eight tested 20S core subunits and all of the 19S regulatory particle subunits except for CeRpn9, CeRpn10, and Ce Rpn12, where RNAi caused no abnormality. However, synthetic suppression of CeRpn10 and CeRpn12 was lethal, whereas neither the combination of Ce Rpn9 with CeRpn10 nor with CeRpn12 resulted in abnormalities in RNAi. These results indicate that the 26S proteasome is indispensable for embryogenesis and postembryonic development, although Ce Rpn9, CeRpn10, and CeRpn12 are not essential, at least under the conditions used. CeRpn10 and Ce Rpn12 are considered to compensate for the suppression of each other.


1993 ◽  
Vol 13 (11) ◽  
pp. 7133-7143
Author(s):  
W R Morgan ◽  
I Greenwald

We describe our characterization of kin-15 and kin-16, a tandem pair of homologous Caenorhabditis elegans genes encoding transmembrane protein tyrosine kinases (PTKs) with an unusual structure: the predicted extracellular domain of each putative gene product is only about 50 amino acids, and there are no potential autophosphorylation sites in the C-terminal domain. Using lacZ fusions, we found that kin-15 and kin-16 both appear to be expressed during postembryonic development in the large hypodermal syncytium (hyp7) around the time that specific hypodermal cells fuse with hyp7. kin-15 and kin-16 were positioned on the genetic and physical maps, but extrachromosomal arrays containing wild-type kin-15 and/or kin-16 genes were unable to complement candidate lethal mutations. The results suggest that kin-15 and kin-16 may be specifically involved in cell-cell interactions regulating cell fusions that generate the hypodermis during postembryonic development.


1980 ◽  
Vol 78 (2) ◽  
pp. 542-576 ◽  
Author(s):  
J.E. Sulston ◽  
D.G. Albertson ◽  
J.N. Thomson

Sign in / Sign up

Export Citation Format

Share Document