The Family of G Protein-Coupled Receptors: An Example of Membrane Proteins

Author(s):  
Irina G. Tikhonova ◽  
Daniel Fourmy
Author(s):  
Gabriele Stephan ◽  
Niklas Ravn-Boess ◽  
Dimitris G Placantonakis

Abstract Members of the adhesion family of G protein-coupled receptors (GPCRs) have received attention for their roles in health and disease, including cancer. Over the past decade, several members of the family have been implicated in the pathogenesis of glioblastoma. Here, we discuss the basic biology of adhesion GPCRs and review in detail specific members of the receptor family with known functions in glioblastoma. Finally, we discuss the potential use of adhesion GPCRs as novel treatment targets in neuro-oncology.


2008 ◽  
Vol 8 (3) ◽  
pp. 207-217 ◽  
Author(s):  
A. Reyes‐Alcaraz ◽  
T. Tzanov ◽  
P. Garriga

2019 ◽  
Author(s):  
S. Muk ◽  
S. Ghosh ◽  
S. Achuthan ◽  
X. Chen ◽  
X. Yao ◽  
...  

AbstractAlthough the three-dimensional structures of G-protein-coupled receptors (GPCRs), the largest superfamily of drug targets, have enabled structure-based drug design, there are no structures available for 87% of GPCRs. This is due to the stiff challenge in purifying the inherently flexible GPCRs. Identifying thermostabilized mutant GPCRs via systematic alanine scanning mutations has been a successful strategy in stabilizing GPCRs, but it remains a daunting task for each GPCR. We developed a computational method that combines sequence, structure and dynamics based molecular properties of GPCRs that recapitulate GPCR stability, with four different machine learning methods to predict thermostable mutations ahead of experiments. This method has been trained on thermostability data for 1231 mutants, the largest publicly available dataset. A blind prediction for thermostable mutations of the Complement factor C5a Receptor retrieved 36% of the thermostable mutants in the top 50 prioritized mutants compared to 3% in the first 50 attempts using systematic alanine scanning.Statement Of SignifiganceG-protein-coupled receptors (GPCRs), the largest superfamily of membrane proteins play a vital role in cellular physiology and are targets to blockbuster drugs. Hence it is imperative to solve the three dimensional structures of GPCRs in various conformational states with different types of ligands bound. To reduce the experimental burden in identifying thermostable GPCR mutants, we report a computational framework using machine learning algorithms trained on thermostability data for 1231 mutants and features calculated from analysis of GPCR sequences, structure and dynamics to predict thermostable mutations ahead of experiments. This work represents a significant advancement in the development, validation and testing of a computational framework that can be extended to other class A GPCRs and helical membrane proteins.


2022 ◽  
Author(s):  
Michael J. Robertson ◽  
Georgios Skiniotis

G protein-coupled receptors (GPCRs) and other membrane proteins are valuable drug targets, and their dynamic nature makes them attractive systems for study with molecular dynamics simulations and free energy approaches. Here, we report the development, implementation, and validation of OPLS-AA/M force field parameters to enable simulations of these systems. These efforts include the introduction of post-translational modifications including lipidations and phosphorylation. We also modify previously reported parameters for lipids to be more consistent with the OPLS-AA force field standard and extend their coverage. These new parameters are validated on a variety of test systems, with the results compared to high-level quantum mechanics calculations, experimental data, and simulations with CHARMM36m where relevant. The results demonstrate that the new parameters reliably reproduce the behavior of membrane protein systems.


2020 ◽  
Vol 12 (6) ◽  
pp. 1287-1302 ◽  
Author(s):  
Steven Lavington ◽  
Anthony Watts

AbstractG protein-coupled receptors (GPCRs) are a large family of integral membrane proteins which conduct a wide range of biological roles and represent significant drug targets. Most biophysical and structural studies of GPCRs have been conducted on detergent-solubilised receptors, and it is clear that detergents can have detrimental effects on GPCR function. Simultaneously, there is increasing appreciation of roles for specific lipids in modulation of GPCR function. Lipid nanoparticles such as nanodiscs and styrene maleic acid lipid particles (SMALPs) offer opportunities to study integral membrane proteins in lipid environments, in a form that is soluble and amenable to structural and biophysical experiments. Here, we review the application of lipid nanoparticle technologies to the study of GPCRs, assessing the relative merits and limitations of each system. We highlight how these technologies can provide superior platforms to detergents for structural and biophysical studies of GPCRs and inform on roles for protein-lipid interactions in GPCR function.


2014 ◽  
Vol 206 (1) ◽  
pp. 79-95 ◽  
Author(s):  
Govind Kunduri ◽  
Changqing Yuan ◽  
Velayoudame Parthibane ◽  
Katherine M. Nyswaner ◽  
Ritu Kanwar ◽  
...  

The coat protein II (COPII)–coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein–coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking.


2002 ◽  
Vol 30 (4) ◽  
pp. 428-432 ◽  
Author(s):  
E. W. Hillhouse ◽  
H. Randeva ◽  
G. Ladds ◽  
D. Grammatopoulos

Corticotropin-releasing hormone (CRH) and related peptides (urocortins, sauvagine, urotensin) play a central role in the co-ordination of autonomic, behavioural, cardiovascular, immune and endocrine responses to stressful stimuli. Their actions are mediated through activation of two types of G-protein-coupled receptors encoded by separate genes. In this review we focus on the diverse structural and functional characteristics of the family of CRH-like peptides and their receptors.


2007 ◽  
Vol 50 (3) ◽  
pp. 320-321 ◽  
Author(s):  
S. Tetzlaff ◽  
S. Ponsuksili ◽  
E. Murani ◽  
K. Schellander ◽  
K. Wimmers

Abstract. The parathyroid hormone/parathyroid hormone like hormone type I receptor (PTHR1) belongs to the family of G protein-coupled receptors for peptide hormones, including parathyroid hormone (PTH) and parathyroid hormone like hormone (PTHLH), which participate in epithelial-mesenchymal interactions during the formation and differentiation of epithelial organs (FOLEY et al., 2001; CHOMDEJ et al., 2004). The function of PTHR1 and its ligands suggest its candidacy for traits related to the development of bones and joints but also of mammary gland. The porcine gene was screened for SNPs and assigned to SSC13.


2019 ◽  
Vol 3 (5) ◽  
pp. 609-614 ◽  
Author(s):  
Colleen Mulvihill ◽  
Andrew Ellington

G protein-coupled receptors (GPCRs) are a large and diverse group of membrane proteins that constitute over 30% of FDA approved drug targets. Despite their importance, much remains unknown about GPCR signaling at a system's level. Efforts to engineer receptors with orthogonal components have attempted to provide tools to parse signaling and resultant phenotypes. Recent advances in synthetic biology provide opportunities to engineer receptors at scale and with additional properties that could further inform GPCR biology at a system's level, and enhance the ability to engineer complex signal transduction.


Sign in / Sign up

Export Citation Format

Share Document