LNA-FISH for Detection of MicroRNAs in Frozen Sections

Author(s):  
Asli N. Silahtaroglu
Keyword(s):  
Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


Author(s):  
Kenjiro Yasuda

Localization of amylase,chymotrypsinogen and trypsinogen in pancreas was demonstrated by Yasuda and Coons (1966), by using fluorescent antibody method. These enzymes were naturally found in the zymogen granules. Among them, amylase showed a diffuse localization around the nucleus, in addition to the zymogen granules. Using ferritin antibody method, scattered ferritin granules were also found around the Golgi area (Yasuda et al.,1967). The recent advance in the tissue preparation enables the antigen to be localized in the ultrathin frozen sections, by applying the labeled antibodies onto the sections instead of staining the tissue en bloc.The present study deals with the comparison of the localization of amylase and lipase demonstrated by applying the bismuth-labeled, peroxidase-labeled and ferritin-labeled antibody methods on the ultrathin frozen sections of pancreas, and on the blocks of the same tissue.


Author(s):  
William J. Dougherty ◽  
Samuel S. Spicer

In recent years, considerable attention has focused on the morphological nature of the excitation-contraction coupling system of striated muscle. Since the study of Porter and Palade, it has become evident that the sarcoplastic reticulum (SR) and transverse tubules constitute the major elements of this system. The problem still exists, however, of determining the mechamisms by which the signal to interdigitate is presented to the thick and thin myofilaments. This problem appears to center on the movement of Ca++ions between myofilaments and SR. Recently, Philpott and Goldstein reported acid mucosubstance associated with the SR of fish branchial muscle using the colloidal thorium dioxide technique, and suggested that this material may serve to bind or release divalent cations such as Ca++. In the present study, Hale's iron solution adapted to electron microscopy was applied to formalin-fixed myofibrils isolated from glycerol-extracted rabbit psoas muscles and to frozen sections of formalin-fixed rat psoas muscles.


Author(s):  
R. G. Painter ◽  
K. T. Tokuyasu ◽  
S. J. Singer

A technique for localizing intracellular antigens with immunoferritin conjugates directly on ultrathin frozen sections of glutaraldehyde-fixed tissues has been developed. This method overcomes some of the limitations of previously described procedures, since it avoids drastic fixation, dehydration and embedding procedures which could denature many protein antigens.Briefly cells or tissues were fixed with glutaraldehyde (0.5 to 2% for 1 hr), and ultrathin frozen sections were cut and mounted on grids covered with carbon-coated Formvar film by the procedure described previously. Such sections were stained with ferritin-antibody conjugates by methods described elsewhere.


Author(s):  
K. J. Böhm ◽  
a. E. Unger

During the last years it was shown that also by means of cryo-ultra-microtomy a good preservation of substructural details of biological material was possible. However the specimen generally was prefixed in these cases with aldehydes.Preparing ultrathin frozen sections of chemically non-prefixed material commonly was linked up to considerable technical and manual expense and the results were not always satisfying. Furthermore, it seems to be impossible to carry out cytochemical investigations by means of treating sections of unfixed biological material with aqueous solutions.We therefore tried to overcome these difficulties by preparing yeast cells (S. cerevisiae) in the following manner:


Author(s):  
R. Beeuwkes ◽  
A. Saubermann ◽  
P. Echlin ◽  
S. Churchill

Fifteen years ago, Hall described clearly the advantages of the thin section approach to biological x-ray microanalysis, and described clearly the ratio method for quantitive analysis in such preparations. In this now classic paper, he also made it clear that the ideal method of sample preparation would involve only freezing and sectioning at low temperature. Subsequently, Hall and his coworkers, as well as others, have applied themselves to the task of direct x-ray microanalysis of frozen sections. To achieve this goal, different methodological approachs have been developed as different groups sought solutions to a common group of technical problems. This report describes some of these problems and indicates the specific approaches and procedures developed by our group in order to overcome them. We acknowledge that the techniques evolved by our group are quite different from earlier approaches to cryomicrotomy and sample handling, hence the title of our paper. However, such departures from tradition have been based upon our attempt to apply basic physical principles to the processes involved. We feel we have demonstrated that such a break with tradition has valuable consequences.


Author(s):  
D. Marsh

As a result of vasectomy, spermatozoa are confined to the epididymis and vas deferens, where they degenerate, releasing antigens that enter the circulation or are engulfed by macrophages. Multiple antigens of the sperm can elicit production of autoantibodies; circulating anti-sperm antibodies are found in a large percentage of vasectomized men, indicating the immunogenicity of the sperm. The increased prevalence of macrophages in the liomen of the rhesus monkey testicular efferent ducts after vasectomy led to further study of this region. Frozen sections were used for evaluation of immunopathological status by fluorescence microscopy with fluorescein-conjugated antibody. Subsequent granular deposits of immune complexes were revealed by positive immunofluorescence staining for complement. The immune complex deposition in the basement membrane surrounding the efferent ducts implies that this region is involved in antigen leakage (Fig. 1).


1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S205-S222 ◽  
Author(s):  
Walter E. Stumpf

ABSTRACT The paper describes four autoradiographic techniques which can be recommended, not without restrictions, for the study of the cellular and subcellular hormone or drug distribution in tissues. In all of the techniques desiccated slides are used which are precoated with photographic emulsion. The techniques are (I) Dry-mounting of freeze-dried sections on emulsion precoated slides; (II) Thaw-mounting of frozen sections on emulsion precoated slides; (III) Smear-mounting on emulsion precoated slides; and (IV) Touch-mounting on emulsion precoated slides. The techniques are designed to avoid or minimize translocation of the labelled molecules during preparation and during the application to photographic emulsion. Cited examples of application of these techniques demonstrate their utility in hormone research.


2011 ◽  
pp. 67-73
Author(s):  
Cong Thuan Dang ◽  
Thi Thu Thao Le

Background: To evaluate the accuracy and the pitfalls of frozen section examination in diagnosis the common tumors at Hue University Hospital. Materials and method: A retrospective analysis data of 99 consecutive patients from 2007 to 2009 were evaluated and analyzed the major pitfalls. In our 99 patients, 100% cases we compared histological diagnosis on frozen sections with those on paraffin sections. Results: The majority of frozen section examinations were the thyroid lesions 37.4%, breast lesions 25.2%, lymph nodes 16.1%, ovary 9.1% and less common in other diseases (12.1%). The accuracy, sensitivity and specificity of the intraoperative frozen section examination were 93.9%, 89.1% and 98.1% respectively. The main factors causing incorrect diagnosis in frozen section are: Misinterpretation, poor quality of frozen sections, improper sampling in sectioning and difficult to result interpretation. Conclusion: The frozen section analysis of suspect lesions displays good sensitivity and specificity characteristics.


Sign in / Sign up

Export Citation Format

Share Document