Flow Cytometry Measurement of Bone Marrow Perfusion in the Mouse and Sorting of Progenitors and Stems Cells According to Position Relative to Blood Flow In Vivo

Author(s):  
Valérie Barbier ◽  
Ingrid G. Winkler ◽  
Robert Wadley ◽  
Jean-Pierre Lévesque
Blood ◽  
1993 ◽  
Vol 81 (4) ◽  
pp. 901-908 ◽  
Author(s):  
TY Neben ◽  
J Loebelenz ◽  
L Hayes ◽  
K McCarthy ◽  
J Stoudemire ◽  
...  

Abstract The effects of recombinant human interleukin-11 (rhIL-11) on in vivo mouse megakaryocytopoeisis were examined. Normal C57Bl/6 mice and splenectomized C57Bl/6 mice were treated for 7 days with 150 micrograms/kg rhIL-11 administered subcutaneously. In normal mice, peripheral platelet counts were elevated compared with vehicle-treated controls after 3 days of rhIL-11 treatment and remained elevated until day 10. Splenectomized mice treated with rhIL-11 showed elevated peripheral platelet counts that were similar in magnitude to normal rhIL-11-treated mice. However, on day 10 the platelet counts in rhIL-11- treated, splenectomized mice were no longer elevated. Analysis of bone marrow megakaryocyte ploidy by two-color flow cytometry showed an increase, relative to controls, in the percentage of 32N megakaryocytes in both normal and splenectomized animals treated with rhIL-11. In normal mice, the number of spleen megakaryocyte colony-forming cells (MEG-CFC) were increased twofold to threefold relative to controls after 3 and 7 days of rhIL-11 treatment, whereas the number of bone marrow MEG-CFC were increased only on day 7. The number of MEG-CFC in the bone marrow of rhIL-11-treated, splenectomized mice was increased twofold compared with controls on both days 3 and 7 of the study. These data show that in vivo treatment of normal or splenectomized mice with rhIL-11 increased megakaryocyte progenitors, stimulated endoreplication of bone marrow megakaryocytes, and increased peripheral platelet counts. In addition, results in splenectomized mice showed that splenic hematopoiesis was not essential for the observed increases in peripheral platelets in response to rhIL-11 administration.


Lupus ◽  
2017 ◽  
Vol 27 (1) ◽  
pp. 49-59 ◽  
Author(s):  
X Yang ◽  
J Yang ◽  
X Li ◽  
W Ma ◽  
H Zou

Background The objective of this paper is to analyze the role of bone marrow-derived mesenchymal stem cells (BM-MSCs) on the differentiation of T follicular helper (Tfh) cells in lupus-prone mice. Methods Bone marrow cells were isolated from C57BL/6 (B6) mice and cultured in vitro, and surface markers were identified by flow cytometry. Naïve CD4+ T cells, splenocytes and Tfh cells were isolated from B6 mice spleens and co-cultured with BM-MSCs. The proliferation and the differentiation of CD4+ T cells and Tfh cells were analyzed by flow cytometry. Lupus-prone MRL/Mp-lpr/lpr (MRL/lpr) mice were treated via intravenous injection with expanded BM-MSCs, the differentiation of Tfh cells was detected, and the relief of lupus nephritis was analyzed. Results MSCs could be successfully induced from bone marrow cells, and cultured BM-MSCs could inhibit T cell proliferation dose-dependently. BM-MSCs could prevent Tfh cell development from naïve CD4+ T cells and splenocytes. BM-MSCs could inhibit IL-21 gene expression and cytokine production and inhibit isolated Tfh cells and STAT3 phosphorylation. In vivo study proved that BM-MSCs intravenous injection could effectively inhibit Tfh cell expansion and IL-21 production, alleviate lupus nephritis, and prolong the survival rate of lupus-prone mice. Conclusions BM-MSCs could effectively inhibit the differentiation of Tfh cells both in vitro and in vivo. BM-MSC treatment could relieve lupus nephritis, which indicates that BM-MSCs might be a promising therapeutic method for the treatment of SLE.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5256-5256
Author(s):  
Doug Cipkala ◽  
Kelly McQuown ◽  
Lindsay Hendey ◽  
Michael Boyer

Abstract The use of cytotoxic T-lymphocytes (CTL) has been attempted experimentally with various tumors to achieve disease control. Factors that may influence GVT include CTL cytotoxicity, ability to home to disease sites, and survival of T cells in the host. The objective of our study is to evaluate the GVL effects of human alloreactive CTL against ALL in a chimeric NOD/scid mouse model. CTL were generated from random blood donor PBMCs stimulated with the 697 human ALL cell line and supplemented with IL-2, -7, or -15. CTL were analyzed for in vitro cytotoxicity against 697 cells, phenotype, and in vitro migration on day 14. NOD/scid mice were injected with 107 697 ALL cells followed by 5x106 CTL. Mice were sacrificed seven days following CTL injection and residual leukemia was measured in the bone marrow and spleen via flow cytometry. The ratios of CD8/CD4 positive T cells at the time of injection were 46/21% for IL-2, 52/31% for IL-7, and 45/14% for IL-15 cultured CTL (n=13). Control mice not receiving CTL had a baseline leukemia burden of 2.01% and 0.15% in the bone marrow and spleen, respectively (n=15). Mice treated with IL-15 cultured CTL had a reduction in tumor burden to 0.2% (n=13, p=0.01) and 0.05% (n=13, p=0.01) in bone marrow and spleen, respectively. Those treated with IL-2 or IL-7 cultured CTL showed no significant difference in leukemia burden in either the bone marrow (IL-2 1.28%, Il-7 5.97%) or spleen (IL-2 0.4%, IL-7 0.33%). No residual CTL could be identified in the bone marrow or spleen at the time of sacrifice in any CTL group. CTL grown in each cytokine resulted in similar in vitro cytotoxicity at an effector:target ratio of 10:1 (IL-2 41.3%, IL-7 37.7%, IL-15 45.3%, n=12–15, p>0.05 for all groups) and had statistically similar intracellular perforin and granzyme-B expression. In vitro CTL migration to a human mesenchymal stem cell line was greatest with IL-15 CTL (30.5%, n=4), followed by IL-7 CTL (18.9%, n=4), and least in IL-2 CTL (17.9%, n=4), though the differences were not significant. In vitro CTL migration was analyzed to an SDF-1α gradient as CXCR4/SDF-1α interactions are necessary for hematopoietic progenitor cell homing to the bone marrow. IL-15 cultured CTL showed the highest migration (48.8%, n=8) as compared to IL-2 (21.7%, n=6, p=0.048) or IL-7 CTL (35.9%, n=8, p>0.05). However, surface expression of CXCR4 measured by flow cytometry was significantly higher in IL-7 CTL (89.4%, n=9) compared to IL-2 CTL (52.2%, n=9, p<0.001) and IL-15 CTL (65.4%, n=10, p=0.002). Experiments are currently underway to further evaluate the role of CXCR4/SDF-1α in GVL. Preliminary in vivo experiments do not suggest any significant differences in CTL engraftment when evaluated at 24 hours post injection. Expression of the anti-apoptotic bcl-2 protein was greatest on IL-7 (MFI=5295, n=13) and IL-15 (MFI=4865, n=14) when compared to IL-2 CTL (MFI=3530, n=13, p=0.02 vs. IL-7, p=0.05 vs. IL-15), suggesting an increased in vivo survival ability. We hypothesize that IL-15 cultured CTL have greater GVL effects due to either higher in vivo survival, greater bone marrow homing efficiency, or both. Future experiments are planned to evaluate in vivo administration of IL-2 to enhance CTL survival in the host. In conclusion, IL-15 cultured CTL had significantly greater in vivo GVL effects compared to IL-2 and IL-7 CTL in the NOD/scid mouse model. This model can be utilized to evaluate the mechanism of T cell mediated GVL against ALL and potentially other human malignancies.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3539-3539
Author(s):  
Jacopo Mariotti ◽  
Kaitlyn Ryan ◽  
Paul Massey ◽  
Nicole Buxhoeveden ◽  
Jason Foley ◽  
...  

Abstract Abstract 3539 Poster Board III-476 Pentostatin has been utilized clinically in combination with irradiation for host conditioning prior to reduced-intensity allogeneic hematopoietic stem cell transplantation (allo-HSCT); however, murine models utilizing pentostatin to facilitate engraftment across fully MHC-disparate barriers have not been developed. To address this deficit in murine modeling, we first compared the immunosuppressive and immunodepleting effects of pentostatin (P) plus cyclophosphamide (C) to a regimen of fludarabine (F) plus (C) that we previously described. Cohorts of mice (n=5-10) received a three-day regimen consisting of P alone (1 mg/kg/d), F alone (100 mg/kg/d), C alone (50 mg/kg/d), or combination PC or FC. Combination PC or FC were each more effective at depleting and suppressing splenic T cells than either agent alone (depletion was quantified by flow cytometry; suppression was quantified by cytokine secretion after co-stimulation). The PC and FC regimens were similar in terms of yielding only modest myeloid suppression. However, the PC regimen was more potent in terms of depleting host CD4+ T cells (p<0.01) and CD8+ T cells (p<0.01), and suppressing their function (cytokine values are pg/ml/0.5×106 cells/ml; all comparisons p<0.05) with respect to capacity to secrete IFN-g (13±5 vs. 48±12), IL-2 (59±44 vs. 258±32), IL-4 (34±10 vs. 104±12), and IL-10 (15±3 vs. 34±5). Next, we evaluated whether T cells harvested from PC-treated and FC-treated hosts were also differentially immune suppressed in terms of capacity to mediate an alloreactive host-versus-graft rejection response (HVGR) in vivo when transferred to a secondary host. BALB/c hosts were lethally irradiated (1050 cGy; day -2), reconstituted with host-type T cells from PC- or FC-treated recipients (day -1; 0.1 × 106 T cells transferred), and challenged with fully allogeneic transplant (B6 donor bone marrow, 10 × 106 cells; day 0). In vivo HVGR was quantified on day 7 post-BMT by cytokine capture flow cytometry: absolute number of host CD4+ T cells secreting IFN-g in an allospecific manner was ([x 106/spleen]) 0.02 ± 0.008 in recipients of PC-treated T cells and 1.55 ± 0.39 in recipients of FC-treated cells (p<0.001). Similar results were obtained for allospecific host CD8+ T cells (p<0.001). Our second objective was to characterize the host immune barrier for engraftment after PC treatment. BALB/c mice were treated for 3 days with PC and transplanted with TCD B6 bone marrow. Surprisingly, such PC-treated recipients developed alloreactive T cells in vivo and ultimately rejected the graft. Because the PC-treated hosts were heavily immune depleted at the time of transplantation, we reasoned that failure to engraft might be due to host immune T cell reconstitution after PC therapy. In an experiment performed to characterize the duration of PC-induced immune depletion and suppression, we found that although immune depletion was prolonged, immune suppression was relatively transient. To develop a more immune suppressive regimen, we extended the C therapy to 14 days (50 mg/Kg) and provided a longer interval of pentostatin therapy (administered on days 1, 4, 8, and 12). This 14-day PC regimen yielded CD4+ and CD8+ T cell depletion similar to recipients of a lethal dose of TBI, more durable immune depletion, but again failed to achieve durable immune suppression, therefore resulting in HVGR and ultimate graft rejection. Finally, through intensification of C therapy (to 100 mg/Kg for 14 days), we were identified a PC regimen that was both highly immune depleting and achieved prolonged immune suppression, as defined by host inability to recover T cell IFN-g secretion for a full 14-day period after completion of PC therapy. Finally, our third objective was to determine with this optimized PC regimen might permit the engraftment of MHC disparate, TCD murine allografts. Indeed, using a BALB/c-into-B6 model, we found that mixed chimerism was achieved by day 30 and remained relatively stable through day 90 post-transplant (percent donor chimerism at days 30, 60, and 90 post-transplant were 28 ± 8, 23 ± 9, and 21 ± 7 percent, respectively). At day 90, mixed chimerism in myeloid, T, and B cell subsets was observed in the blood, spleen, and bone marrow compartments. Pentostatin therefore synergizes with cyclophosphamide to deplete, suppress, and limit immune reconstitution of host T cells, thereby allowing engraftment of T cell-depleted allografts across MHC barriers. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 766-766
Author(s):  
Anna Sergeeva ◽  
Hong He ◽  
Kathryn Ruisaard ◽  
Karen Clise-Dwyer ◽  
Lisa S St. John ◽  
...  

Abstract Abstract 766 PR1 (VLQELNVTV) is an HLA-A2-restricted leukemia-associated peptide from proteinase 3 and neutrophil elastase that is recognized by PR1-specific cytotoxic T lymphocytes that contribute to cytogenetic remission of myeloid leukemia. We developed a high affinity T cell receptor (TCR)-like mouse monoclonal antibody (8F4) that binds to a conformational epitope of the PR1/HLA-A2 complex. Flow cytometry and confocal microscopy of 8F4-labeled cells showed significantly higher PR1/HLA-A2 expression on AML blasts compared with normal leukocytes. Moreover, 8F4 mediated complement dependent cytolysis of AML blasts and Lin−CD34+CD38− leukemia stem cells (LSC), but not normal leukocytes. To investigate in vivo biological effects 8F4 on established leukemia, we established xenografts of primary human HLA-A2-positive AML in sublethally irradiated NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Leukemia engraftment was monitored in peripheral blood by flow cytometry. Mice with established PR1/HLA-A2-expressing leukemia were treated with twice-weekly intravenous injections of 200 μg 8F4 or isotype control antibody. Flow cytometry and histology analysis of tissues was used to assess leukemia burden and level of engraftment. After 5 weeks of treatment AML was reduced 300-fold in bone marrow of 8F4-treated mice compared to isotype-treated control animals (0.07 ± 0.06% hCD45+cells versus 20.4 ± 4.1%, n=5 mice per group). Moreover, leukemia stem cells (LSC, CD34+CD38−Lin-) were no longer detected in bone marrow of 8F4-treated mice, compared to 0.88 ± 0.24% in isotype-treated mice. Equally, AML was evident in the liver and spleen of isotype-treated mice (1.1 ± 0.16% and 0.32 ± 0.17%, respectively), but was undetectable in 8F4-treated mice (p<0.001). Similar results were obtained with AML from two additional patients, one with secondary AML (CMML) and one with AML-M7. Bone marrow contained 6.2 ± 3.0% (n=3) AML versus 41 ± 15% (n=2 mice; p=0.06) in the first case and 0.16 (n=1) versus 7.0 ± 4.1 (n=2) in the second case after 2–3 weeks of twice-weekly injection. To confirm 8F4-mediated elimination of LSC, we performed secondary transfer experiment with 1×106 bone marrow cells from 8F4- and isotype-treated mice, transplanted into recipient NSG mice, irradiated with 250 cGy. AML was undetectable in mice that received bone marrow from 8F4-treated animals versus 4.1 ± 2.4% (n=4) in bone marrow of mice that received cells from isotype- treated mice, determined at 16 weeks after secondary transfer. Because PR1/HLA-A2 expression on normal hematopoietic cells (HSC) is similar to LSC in AML patients, we sought to determine whether 8F4 treatment of NSG mice xenografted with CD34-selected umbilical cord blood resulted in elimination of xenograft. Fourteen weeks after transplant stable chimerism (4.1 - 7.7% hCD45+ cells) was established, mice were treated with 50 μg 8F4 intravenously and peripheral blood was monitored weekly for chimerism. Human CD45+ cells decreased to 0.35 – 0.95% by week 1, but increased to 1.9 – 2.1 % hCD45+ cells at week 3. Bone marrow at week three contained myeloid (CD13+CD33+) and lymphoid (CD19+) cells showing that while 8F4 has off- target effects against normal hematopoietic cells, HSC are preserved. This is consistent with our previous studies that showed no 8F4-mediated effect on colony formation of normal bone marrow cells. In conclusion, these results show that anti-PR1/HLA-A2 monoclonal antibody 8F4 is biologically active in vivo and selectively eliminates LSC, but not normal HSC. This justifies continued study of 8F4 as a novel therapy for AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3090-3090 ◽  
Author(s):  
Folashade Otegbeye ◽  
Nathan Mackowski ◽  
Evelyn Ojo ◽  
Marcos De Lima ◽  
David N. Wald

Abstract Introduction: A crucial component of the innate immune response system, natural killer (NK) cells are uniquely competent to mediate anti-myeloid leukemia responses. NKG2D is an activating receptor on the surface of NK cells that engages stress ligands MICA and MICB, typically upregulated on myeloid leukemia cells. Adoptive transfer of NK cells is a promising treatment strategy for AML. Strategies to optimize the anti-leukemia effect of NK cell adoptive transfer are an area of active research. These include attempts to enhance NK cell activity and to maintain the activation status and proliferation of the NK cells in vivo. Traditionally, IL-2 has been used to maintain the in vivo proliferation of adoptively transferred NK cells, but it leads to unwanted proliferation of regulatory T cells and suboptimal NK cell proliferation. IL-15 may be superior to IL-2, without the effects on T regulatory cells. The IL-15 superagonist, ALT-803 exhibits >25 fold enhancement in biological activity as compared to IL-15. ALT-803 is a fusion protein of an IL-15 mutant and the IL-15Rα/Fc complex that has recently entered clinical trials as a direct immunomodulatory agent in cancer clinical trials We hypothesized ALT-803 would augment the activity and/or proliferation of adoptively transferred NK cells in vitro and in a mouse model system.. Methods: Human NK cells were isolated from healthy donor peripheral blood and were expanded over a 21-day period in co-culture with irradiated K562 cells genetically modified to express membrane-bound IL-21. (Somanchi et al. 2011 JoVE 48. doi: 10.3791/2540) The NK cells were expanded with IL-2 (50mU/mL) and/or ALT-803 (200ng/mL). On Day 21, NK cells were examined for cytotoxicity against AML cells as well as by flow cytometry for expression of known activating receptors. An NSG murine xenograft model of human AML was developed to test the in vivo function of NK cells expanded above. Briefly, NSG mice (n=5 per group) were non-lethally irradiated and each injected IV with 5 x106 OCI-AML3 leukemic cells. Two days later, each mouse received weekly NK cell infusions for 2 weeks. Mice that received NK cells expanded with IL2 got cytokine support with IL-2 (75kU IP three times a week). Mice infused with ALT-803 expanded cells (alone or in combination with IL2) received ALT-803 (0.2mg/kg IV weekly). One control group received OCI cells but were infused weekly only with 2% FBS vehicle, no NK cells. Leukemic burden in each mouse was assessed by flow cytometry of bone marrow aspirates on day 28 following start of NK cell infusions). This time point was chosen as the control mice appeared moribund. Results: ALT-803 did not have any differential effect on the proliferation of the NK cells ex vivo as compared to IL-2. However, the presence of ALT-803 either alone or in combination with IL-2 resulted in a significant increase (30% increase, p<0.0001) in the cytotoxic activity of the NK cells against leukemia cells as compared with IL-2 alone in vitro (figure 1). In addition, the percentages of NK cells that express the activating receptor NKG2D as well as CD16 were significantly higher (p<0.001 for both) after ALT-803 exposure (figure 1). Finally, in the murine xenograft AML model, ALT-803 expanded NK cells, which were also supported in vivo with ALT-803, resulted in an 8-fold reduction in disease burden in the bone marrow (p<0.0001). Importantly the efficacy of NK cells in the ALT-803 injected mice was significantly higher (3-fold, p= 0.0447) than IL-2 treated mice (figure 2). Discussion: Our results suggest that the presence of ALT-803 during ex-vivo expansion of NK cells results in increased activation and cytotoxicity against AML cells. In addition our results using a murine model of human AML show that the use of ALT-803 in combination with adoptively transferred NK cells provides a significant anti-leukemic benefit as compared to IL-2. Future studies to test larger panels of leukemia cells as well as other cancer cell lines are currently in progress. It is hoped that this work will lead to an improvement in the efficacy of adoptively transferred NK cells for AML patients due to an improvement in survival and activity of the NK cells. Disclosures Wald: Invenio Therapeutics: Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1007-1007
Author(s):  
Daniel Teschner ◽  
Christian Michel ◽  
Steve Pruefer ◽  
Matthias Theobald ◽  
Hansjoerg Schild ◽  
...  

Abstract Background and Aims: Immunodeficient patients after allogeneic stem cell transplantation (HSCT) are heavily threatened by opportunistic fungal infections like invasive pulmonary aspergillosis (IPA), partly due to immunosuppressive medication e.g. by calcineurin inhibitors like cyclosporine A (CsA) or tacrolimus. It is well known that the nuclear factor of activated T cells (NFAT) is an important transcription factor downstream of calcineurin in the adaptive immune system especially in T cells. Additionally, there is a growing body of evidence that NFAT also plays a substantial role in innate immune response against invasive fungal diseases by polymorphonuclear neutrophils (PMN), as well as in regulation of myelopoiesis and myeloid differentiation, as indicated by recent data in rodent models. Methods: Firstly, we used a murine IPA model (C57BL/6) to clarify the role of NFAT in antifungal innate immune response in vivo. To do so, we treated mice intraperitoneally with CsA (18mg/kg/d) or vehicle for 2 weeks and challenged them with Aspergillus fumigatus (A. f.) conidia intratracheally. 24 hours later, some mice were sacrificed and PMN recruitment to the lungs and pulmonary fungal clearance were examined by analyzing bronchoalveolar lavages (BAL) and peripheral blood (PB) by flow cytometry and murine lungs by fungal culture assays and histopathologic examination. In addition, survival of remaining infected mice was studied with neutropenic animals (by depletion with anti-Gr1) serving as positive controls. Secondly, LysM-specific NFATc1 knockout (NFATc1LysM) mice were bred lacking NFATc1 expression solely in myelomonocytic cells (i.e. PMN and monocytes). Furthermore, these animals were infected with A. f. and analyzed as described above. Secondly, we investigated myelopoiesis and myeloid differentiation under steady state conditions by quantifying bone marrow derived myeloid progenitor cells from CsA treated or NFATc1LysM mice using flow cytometry and simultaneously counting PMN in PB. Results: While the infection was lethal in CsA or vehicle treated neutropenic mice, all CsA or vehicle treated mice survived the infection. CsA treated mice showed enhanced PMN recruitment in BAL by trend (55.2% +/- 12.0 (CsA) vs. 33.7% +/- 8.0 (control), mean +/- SEM, p=0.053), whereas pulmonary inflammation and PMN counts in PB were comparable to controls. In contrast, fungal clearance was clearly impaired in animals after CsA treatment (2.1 x 105 CFU/lung after 48 hours +/- 0.5 (CsA) vs. 1.7 x 105 +/- 0.2 (control), p<0.005). Along with that, NFATc1LysM mice infected with A. f. showed unimpaired survival. However, there were no detectable differences in PMN recruitment or fungal clearance, whereas pulmonary inflammation and PMN counts in PB seemed to be more pronounced in knockout mice (1.0 inflammation points/lung +/- 0.12 (NFATc1LysM) vs. 0.7 +/- 0.07 (control), p=0.057; 1.5 x 103 PMN/µl +/- 0.2 (NFATc1LysM) vs. 0.9 +/- 0.1 (control), p=0.036). Distribution of bone marrow derived murine myeloid progenitor cells was unaffected through NFAT inhibition by CsA but clearly impaired in NFATc1LysM mice especially in megakaryocyte-erythroid progenitor cells (1.2 x 105 cells +/- 0.2 (NFATc1LysM) vs. 2.7 +/- 0.6, p=0.015) whereas PMN blood counts in PB were unchanged. Conclusions: In a mouse model, NFAT inhibition via treatment with CsA does not influence survival after infection with A. f. in vivo but affects PMN recruitment and local fungal clearance. To some extent this may be due to impaired PMN phagocytic and migratory capabilities as indicated by our in vitro and ex vivo studies (data not shown). However, solely NFATc1 downregulation in PMN apparently results in slightly different effects given that infected NFATc1LysM mice displayed enhanced pulmonary inflammation and elevated PMN blood counts compared to controls. Additionally, NFATc1 inhibition in NFATc1LysM mice leads to constrained myelopoiesis under steady state conditions without affecting peripheral PMN blood counts compared to untreated wild type controls. Further studies are needed to clarify underlying mechanisms and clinical relevance in HSCT of our findings. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 949-949
Author(s):  
Q. Jeremy Wen ◽  
Brittany Woods ◽  
Qiong Yang ◽  
Chiu Sophia ◽  
Gu Lillu ◽  
...  

Abstract Aberrant megakaryopoiesis is a hallmark of the myeloproliferative neoplasms (MPN). It is has been long known that abnormal megakaryocytes secrete elevated levels of cytokines such as TGFβ, resulting in pathologies including bone marrow fibrosis. Two recent studies showed that megakaryocytes regulate the quiescence of HSCs, raising the possibility that megakaryocytes may promote the MPNs by influencing the biology of non-malignant HSCs. However, the mechanism by which megakaryocytes regulate the initiation and progression of MPNs is largely unknown. To study the role of megakaryocytes in the MPNs, we analyzed the phenotype of PF4-Cre/Jak2V617F mice in which Jak2 is expressed in the megakaryocyte lineage from the endogenous locus, in contrast to previous studies, which used transgenic models. Selective activation of Jak2V617F was confirmed by allele-specific qPCR. CD41+ cells were positive for mutant Jak2, whereas sorted stem/progenitor cells and erythroid cells were Jak2 wild-type. Furthermore, flow cytometry showed that Stat5 activation was present in megakaryocytes, but not in erythroid or myeloid cells. Activation of JAK-STAT signaling caused an expansion of megakaryocytes in the bone marrow and spleen and a modest increase in the platelet count. Surprisingly, PF4-Cre/Jak2V617F mice also displayed a robust expansion of TER119(low)/CD71(high) and TER119(high)/CD71(high) red cells in the spleen, increased hematocrit and splenomegaly. Histological examination of the spleen revealed expansion of the erythroid lineage coupled with disrupted splenic architecture and fibrosis. This PV-like phenotype was fully penetrant and comparable to that of Vav-Cre/Jak2V617F mice, which express mutant Jak2 in all hematopoietic lineages. Profiling of hematopoietic progenitors by flow cytometry demonstrated that myeloid progenitor populations were expanded and skewed toward the erythroid-megakaryocyte lineage with a significant increase in Pre Meg-E, Pre CFU-E and MKPs in the PF4Cre/Jak2V617F mice. In addition, LSK cells were increased in both the bone marrow and spleen. Cytokine profiling of the plasma revealed increased levels of several cytokines, including Il-6, which is known to be upregulated in human JAK2 mutant PV megakaryocytes. Significant increases in Cxcl1, Cxcl2, and Ccl11 were also detected. Real-time qPCR analysis confirmed increased expression of these cytokines/chemokines in Jak2V617F-mutant CD41+ cells. Furthermore, IL6 treatment increased EPO-dependent colony formation of wild type LSKs and MEPs, and also enhanced expression of the erythroid cell markers CD71 and Ter119. To further explore the role of megakaryocytes in the MPNs, we used a strategy in which expression of the diphtheria toxin receptor (DTR) sensitizes cells to diphtheria toxin (DT). We transduced c-Kit+ cells from PF4-Cre/iDTR+/- mice with MPLW515L and transplanted the cells to irradiated mice. As expected, both iDTR+/- and PF4-Cre/iDTR+/- mice developed a PMF-like phenotype, including leukocytosis, thrombocytosis, splenomegaly and myelofibrosis (Fig 1). Treatment of these animals with DT caused significant reductions in megakaryocytes in the bone marrow and spleen as well as a decrease in the platelet count of PF4-Cre/iDTR+/- mice. Of note, DT also significantly reduced the white count and spleen weight, while restoring splenic architecture. PF4Cre/iDTR+/- mice also showed significant reduction of c-Kit+ myeloid progenitor cells. Therefore, depletion of megakaryocytes significantly attenuated the disease phenotype of MPLW515L induced MPN in vivo. Together, these two model systems reveal that JAK2 activation in megakaryocytes is sufficient and necessary for MPNs and support the development of megakaryocyte differentiation therapy in the disease. Moreover our data resonate with studies in MPN patients in which a JAK2V617F low allele burden in the setting of full-blown, clinical MPN. figure 1 Depletion of megakaryocytes attenuated the MPN phenotype induced by MPLW515L. c-Kit+ bone marrow cells of IDTR+/- mice with or without PF4Cre were transduced with retroviruses carrying MPLW515L. Injection of diphtheria toxin (DT) was initiated on day 28 post-transplant. Depletion of megakaryocytes by DT reduced platelet and white count (A, B), decreased spleen weight (C) and reduced megakaryocyte and erythroid cell infiltration in the spleen (D). *, p<0.05, **, p<0.01. figure 1. Depletion of megakaryocytes attenuated the MPN phenotype induced by MPLW515L. c-Kit+ bone marrow cells of IDTR+/- mice with or without PF4Cre were transduced with retroviruses carrying MPLW515L. Injection of diphtheria toxin (DT) was initiated on day 28 post-transplant. Depletion of megakaryocytes by DT reduced platelet and white count (A, B), decreased spleen weight (C) and reduced megakaryocyte and erythroid cell infiltration in the spleen (D). *, p<0.05, **, p<0.01. Disclosures Levine: Novartis: Consultancy; Qiagen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
1972 ◽  
Vol 39 (5) ◽  
pp. 697-712 ◽  
Author(s):  
Robert S. McCuskey ◽  
Howard A. Meineke ◽  
Samuel F. Townsend

Abstract Specific alterations in the microvascular and connective tissue compartments of the hemopoietic microenvironment have been examined during erythropoietic regeneration and suppression in the murine spleen and bone marrow using in vivo microscopic and histochemical methods. The results have confirmed the concept of specific hemopoietic microenvironments and have demonstrated specific alterations in the microenvironment during erythropoietic stimulation and repression. Elevated erythropoiesis in the splenic red pulp is accompanied by an elevation in blood flow through the microvascular system. Both the linear velocity of flow and the number of sinusoids with blood flow in them increased significantly. In contrast, erythropoietic repression was accompanied by a decreased linear velocity of blood flow, as well as a marked increase in the amount of blood being stored in the splenic sinusoids. This also was the picture when diffuse granulopoiesis was present in the red pulp, or when granuloid or undifferentiated colonies were present. The chemical composition of the stroma in the spleen and bone marrow also varied during states of hemopoietic activity and, in addition, there were differences in the composition of the stroma between these two organs. In both organs, foci of early proliferating cells were enveloped by a coating of sulfated acid mucopolysaccharide. This coat persisted on cells in later stages of granulopoiesis but not on cells in the later stages of erythropoiesis. The latter were enveloped with a coating of neutral mucopolysaccharide. A tentative hypothesis to explain the mechanisms involved in producing these changes is discussed.


Sign in / Sign up

Export Citation Format

Share Document